Air Quality and Greenhouse Gases (AIR)

Around the world, AIR's systems approach is framing new policies that maximize co-benefits between air quality management, greenhouse gas mitigation and other policy priorities.

© Vicki France | Dreamstime.com

© Vicki France | Dreamstime.com

There are important interactions between climate and air quality strategies, and development, economic and social policy objectives. However, maximizing the potential co-benefits from these - well-documented - interactions poses a host of complex  challenges to decision makers. Unless put into context, these interactions could not only prohibit a cost-effective solution to both problems, but also lead to important trade-offs that unnecessarily waste important resources.

Model analyses, based on latest scientific findings and validated data, can provide valuable information on the design of (cost-)effective strategies that meet multiple policy objectives and yield potentially large economic synergies.

With an interdisciplinary team of researchers, AIR builds innovative methodologies that bring together relevant insights from recent research on geo-physical and economic aspects of pollution control. The program develops advanced analytical tools to identify pollution control strategies that put least burden to the economy while maximizing a wide range of environmental benefits. Together with a network of collaborators, AIR uses these tools to inform international negotiations and national planners in different regions of the world. 

Recent AIR Publications

Höglund Isaksson L (2017). Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012. Environmental Research Letters 12 (2): e024007. DOI:10.1088/1748-9326/aa583e.

Rao S, Klimont Z, Smith SJ, Van Dingenen R, Dentener F, Bouwman L, Riahi K, Amann M, et al. (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change 42: 346-358. DOI:10.1016/j.gloenvcha.2016.05.012.

Philip S, Martin R, Snider G, Weagle C, van Donkelaar A, Brauer M, Henze D, Klimont Z, et al. (2017). Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. Environmental Research Letters 12 (4): 044018. DOI:10.1088/1748-9326/aa65a4.

Nabernegg S, Bednar-Friedl B, Wagner F, Schinko T, Cofala J, & Clement YM (2017). The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India. Energies 10 (3): p. 360. DOI:10.3390/en10030360.



Print this page

Last edited: 04 July 2016

CONTACT DETAILS

Markus Amann

Program Director

Air Quality and Greenhouse Gases

T +43(0) 2236 807 432

Access to GAINS-online

Events

IIASA at EGU 2017

23 Apr 2017 - 28 Apr 2017

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313