Read how IIASA works with research partners across the globe to deliver world-class research.
Shinichiro Fujimori is a visiting research scholar in Energy Program at IIASA and a researcher with NIES (National Institute for Environmental Studies, Japan), Center for Social and Environmental Systems Research, having joined the center in April 2010. Dr. Fujimori's main fields of scientific interest include integrated assessment modeling in climate change mitigation as well as its impact and adaptation. Furthermore, in a broader sense, global social environmental issues and their assessments such as food security, biodiversity etc. are also included. His research attempts to inform national and global environmental policy on matters related to environmental change.
Dr. Fujimori is involved in the development of the AIM (Asian-Pacific Integrated Model) in particular the AIM/CGE (Computable General Equilibrium) model. The AIM/CGE model is able to assess macroeconomic impacts due to various aspects of societal and environmental change economics. He is developing an integrating platform, bridging the energy system model (MESSAGE) and the economic model (AIM/CGE) at IIASA.
Dr. Fujimori received his doctorate in Urban and Environmental Engineering from the Kyoto University (Japan), Institute of Engineering in 2009, following the completion of an MSc and BSc at the same institution. Dr. Fujimori first visited IIASA during his PhD studies as a participant of the 2006 Young Scientists Summer Program (YSSP).
Last update: 13-SEP-2016
Kim H, Rosa IMD, Alkemade R, Leadley P, Hurtt G, Popp A, van Vuuren D, Anthoni P, et al. (2018). A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development 11: 4537-4562. DOI:10.5194/gmd-11-4537-2018. (Submitted)
Hasegawa T, Fujimori S, Havlík P, Valin H, Bodirsky BL, Doelman JC, Fellmann T, Kyle P, et al. (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change 8 (8): 699-703. DOI:10.1038/s41558-018-0230-x.
Fujimori S, Hasegawa T, Rogelj J, Su X, Havlik P, Krey V, Takahashi K, & Riahi K (2018). Inclusive climate change mitigation and food security policy under 1.5°C climate goal. Environmental Research Letters 13 (7): e074033. DOI:10.1088/1748-9326/aad0f7.
Gidden M, Fujimori S, van den Berg M, Klein D, Smith SJ, van Vuuren D, & Riahi K ORCID: https://orcid.org/0000-0001-7193-3498 (2018). A Methodology and Implementation of Automated Emissions Harmonization for Use in Integrated Assessment Models. Environmental Modelling & Software 105: 187-200. DOI:10.1016/j.envsoft.2018.04.002.
TWI2050 - The World in 2050 (2018). Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. IIASA Report. International Institute for Applied Systems Analysis (IIASA). Laxenburg, Austria
Luderer G, Vrontisi Z, Bertram C, Edelenbosch O, Pietzcker RC, Rogelj J, De Boer HS, Drouet L, et al. (2018). Residual fossil CO2 emissions in 1.5–2°C pathways. Nature Climate Change 8 (7): 626-633. DOI:10.1038/s41558-018-0198-6.
McCollum D, Zhou W, Bertram C, de Boer H-S, Bosetti V, Busch S, Despres J, Drouet L, et al. (2018). Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy 3 (7): 589-599. DOI:10.1038/s41560-018-0179-z.
Liu J-Y, Fujimori S, Takahashi K, Hasegawa T, Su X, & Masui T (2018). Socioeconomic factors and future challenges of the goal of limiting the increase in global average temperature to 1.5 °C. Carbon Management 9 (5): 447-457. DOI:10.1080/17583004.2018.1477374. (In Press)
Leclere D, Obersteiner M ORCID: https://orcid.org/0000-0001-6981-2769, Alkemade R, Almond R, Barrett M, Bunting G, Burgess N, Butchart S, et al. (2018). Towards pathways bending the curve terrestrial biodiversity trends within the 21st century. IIASA
Zhang R, Fujimori S, & Hanaoka T (2018). The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals. Environmental Research Letters 13 (5): e054008. DOI:10.1088/1748-9326/aabb0d.
Park C, Fujimori S, Hasegawa T, Takakura J, Takahashi K, & Hijioka Y (2018). Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization. Environmental Research Letters 13 (4): e045010. DOI:10.1088/1748-9326/aab724.
Kriegler E, Luderer G, Bauer N, Baumstark L, Fujimori S, Popp A, Rogelj J, Strefler J, et al. (2018). Pathways limiting warming to 1.5°C: a tale of turning around in no time? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2119): e20160457. DOI:10.1098/rsta.2016.0457.
Su X, Shiogama H, Tanaka K, Fujimori S, Hasegawa T, Hijioka Y, Takahashi K, & Liu J (2018). How do climate-related uncertainties influence 2 and 1.5 °C pathways? Sustainability Science 13 (2): 291-299. DOI:10.1007/s11625-017-0525-2.
Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, et al. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change 8 (4): 325-332. DOI:10.1038/s41558-018-0091-3.
Zhou Q, Hanasaki N, Fujimori S, Masaki Y, & Hijioka Y (2018). Economic consequences of global climate change and mitigation on future hydropower generation. Climatic Change 147 (1-2): 77-90. DOI:10.1007/s10584-017-2131-9.
Zhang R, Fujimori S, Dai H, & Hanaoka T (2018). Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model. Applied Energy 211: 76-88. DOI:10.1016/j.apenergy.2017.10.103.
Chunark P, Limmeechokchai B, Fujimori S, & Masui T (2017). Renewable energy achievements in CO 2 mitigation in Thailand's NDCs. Renewable Energy 114: 1294-1305. DOI:10.1016/j.renene.2017.08.017.
Rosa IMD, Pereira HM, Ferrier S, Alkemade R, Acosta LA, Akcakaya HR, den Belder E, Fazel AM, et al. (2017). Multiscale scenarios for nature futures. Nature Ecology & Evolution 1 (10): 1416-1419. DOI:10.1038/s41559-017-0273-9.
Rao S, Klimont Z, Smith SJ, Van Dingenen R, Dentener F, Bouwman L, Riahi K, Amann M, et al. (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change 42: 346-358. DOI:10.1016/j.gloenvcha.2016.05.012.
Takakura Ju, Fujimori S, Takahashi K, Hijioka Y, Hasegawa T, Honda Y, & Masui T (2017). Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environmental Research Letters 12 (6): e064010. DOI:10.1088/1748-9326/aa72cc.
Su X, Takahashi K, Fujimori S, Hasegawa T, Tanaka K, Kato E, Shiogama H, Masui T, et al. (2017). Emission pathways to achieve 2.0°C and 1.5°C climate targets. Earth's Future: 1-13. DOI:10.1002/2016EF000492.
Hasegawa T, Fujimori S, Ito A, Takahashi K, & Masui T (2017). Global land-use allocation model linked to an integrated assessment model. Science of the Total Environment 580: 787-796. DOI:10.1016/j.scitotenv.2016.12.025.
Siagian U, Yuwono B, Fujimori S, & Masui T (2017). Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030. Energies 10 (1): e52. DOI:10.3390/en10010052.
Alexander P, Prestele R, Verburg PH, Arneth A, Baranzelli C, Batista e Silva F, Brown C, Butler A, et al. (2017). Assessing uncertainties in land cover projections. Global Change Biology 23: 767-781. DOI:10.1111/gcb.13447.
Fujimori S, Hasegawa T, & Masui T (2017). AIM/CGE V2.0: Basic Feature of the Model. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 305-328 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_13.
Fujimori S, Kubota I, Dai H, Takahashi K, Hasegawa R, Liu JY, Hijioka Y, Masui T, et al. (2017). The Effectiveness of the International Emissions Trading under the Paris Agreement. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., pp. 65-75 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_5.
Fujimori S, Masui T, & Matsuoka Y (2017). AIM/CGE V2.0 Model Formula. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Masui, T. & Matsuoka, Y., pp. 201-303 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_12.
Fujimori S, Siagian UWR, Hasegawa T, Yuwono BB, Boer R, Immanuel G, & Masui T (2017). Introduction: Overview and Key Messages. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 125-142 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3-8.
Fujimori S, Siagian Ucok W R, Hasegawa T, Yuwono Bintang B, Boer R, Immanuel G, & Masui T (2017). An Assessment of Indonesia’s Intended Nationally Determined Contributions. In: Post-2020 Climate Action. Global and Asian Perspectives. pp. 125-142 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_8.
Fujimori S, Su X, Liu J-Y, Hasegawa T, Takahashi K, Masui T, & Takimi M (2017). Implications of the Paris Agreement in the Context of Long-Term Climate Mitigation Goals. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 11-29 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_2.
Kainuma M, Fujimori S, & Masui T (2017). Introduction: Overview and Key Messages. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 1-9 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_1.
Limmeechokchai B, Chunark P, Fujimori S, & Masui T (2017). Asian INDC Assessments: The Case of Thailand. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 157-178 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_10.
Liu JY, Fujimori S, & Masui T (2017). Temporal and Spatial Distribution of Global Mitigation Cost: INDCs and Equity. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 45-63 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_4.
Shukla PR, Mittal S, Liu JY, Fujimori S, Dai H, & Zhang R (2017). India INDC Assessment: Emission Gap Between Pledged Target and 2 °C Target. In: Post-2020 Climate Action. Eds. Fujimori, S., Kainuma, M. & Matsui, T., pp. 113-124 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_7.
Takahashi K, Emori S, Fujimori S, & Masui T (2017). Risks from Global Climate Change and the Paris Agreement. In: Post-2020 Climate Action. Global and Asian Perspectives. Eds. Fujimori, S., Kainuma, M. & Masui, T., pp. 31-44 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_3.
Tran TT, Fujimori S, & Masui T (2017). Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam. In: Post-2020 Climate Action. Global and Asian Perspectives. pp. 179-200 Singapore: Springer. ISBN 978-981-10-3869-310.1007/978-981-10-3869-3_11.
van Vuuren DP, Riahi K, Calvin K, Dellink R, Emmerling J, Fujimori S, KC S, Kriegler E, et al. (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. Global Environmental Change 42: 148-152. DOI:10.1016/j.gloenvcha.2016.10.009.
Hasegawa T, Fujimori S, Boer R, Immanuel G, & Masui T (2016). Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia. Sustainability 8 (12): e1283. DOI:10.3390/su8121283.
Prestele R, Alexander P, Rounsevell M, Arneth A, Calvin K, Doelman J, Eitelberg D, Engström K, et al. (2016). Hotspots of uncertainty in land use and land cover change projections: a global scale model comparison. Global Change Biology 22 (12): 3967-3983. DOI:10.1111/gcb.13337.
Liu J-Y, Fujimori S, & Masui T (2016). Temporal and spatial distribution of global mitigation cost: INDCs and equity. Environmental Research Letters 11 (11): e114004. DOI:10.1088/1748-9326/11/11/114004.
Fujimori S, Kubota I, Dai H, Takahashi K, Hasegawa T, Liu J-Y, Hijioka Y, Masui T, et al. (2016). Will international emissions trading help achieve the objectives of the Paris Agreement? Environmental Research Letters 11 (10): e104001. DOI:10.1088/1748-9326/11/10/104001.
Fujimori S, Su X, Liu J-Y, Hasegawa T, Takahashi K, Masui T, & Takimi M (2016). Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus 5 (1): e1620. DOI:10.1186/s40064-016-3235-9.
Kyle P, Johnson N, Davies E, Bijl DL, Mouratiadou I, Bevione M, Drouet L, Fujimori S, et al. (2016). Setting the system boundaries of “energy for water” for integrated modeling. Environmental Science & Technology 50 (17): 8930-8931. DOI:10.1021/acs.est.6b01066.
Nelson GC, Valin H, Sands RD, Havlik P, Ahammad H, Deryng D, Elliott J, Fujimori S, et al. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences 111 (9): 3274-3279. DOI:10.1073/pnas.1222465110.
Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, von Meijl H, Hasegawa T, Popp A, et al. (2014). Impacts of increased bioenergy demand on global food markets: An AgMIP economic model intercomparison. Agricultural Economics 45 (1): 103-116. DOI:10.1111/agec.12092.
Robinson S, van Meijl H, Willenbockel D, Valin H, Fujimori S, Masui T, Sands R, Wise M, et al. (2014). Comparing supply-side specifications in models of global agriculture and the food system. Agricultural Economics 45 (1): 21-35. DOI:10.1111/agec.12087.
Schmitz C, von Meijl H, Kyle P, Nelson GC, Fujimori S, Gurgel A, Havlik P, Heyhoe E, et al. (2014). Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agricultural Economics 45 (1): 69-84. DOI:10.1111/agec.12090.
Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, et al. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics 45 (1): 51-67. DOI:10.1111/agec.12089.
von Lampe M, Willenbockel D, Ahammad H, Blanc E, Cai Y, Calvin K, Fujimori S, Hasegawa T, et al. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agricultural Economics 45 (1): 3-20. DOI:10.1111/agec.12086.
Fujimori S (2007). A New Practical Method for Estimation of Input-Output Tables. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-07-015
Curriculum Vitae
International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313
International Institute for Applied Systems Analysis (IIASA) - Schlossplatz 1 - A-2361 Laxenburg, Austria - (+43 2236) 807 0 - Fraud alert | Terms of use