

Choice and definition of policy relevant indicators

Tor Johannessen, Chair, Working Group on Effects

What is policy relevant, and what to choose?

What is policy relevant?

→ Indicators for use in policy relevant processes
 Need to be understood? → by scientists! (& policymakers?)
 Need to be "popular"? → no

Choice

Health – effects of O₃, PM on human health
Materials – effects of S, N, PM on materials
Water – effects of S, (N) on chemistry & biology
Forest – effects of S, N, O₃ on chemistry & biology
Vegetation – effects of O₃, N on crops and vegetation
IM – effects of S, N on ecosystems (chemistry/biology)
M&M – CLoad, CLevel, S, N

TFIAM 36 - Oct 2009

Effects & trends → dose-response → testing scenarios

Terrestrial ecosystems examples

Target	Indicators	chem./biol. data/dose- response
(full) recovery from previous atm. inputs	CL not exceeded; balanced nutrient conc. in foliage	+ / + / + eg. BS, ANC / forest vitality
healthy and vital trees; no further loss of biodiversity	reduced: crown defoliation, decrease of abiotic/biotic damage,natural regeneration	-/ + / + eg. ground vegetation
avoid (all) detectable ozone damage	(large) reduction in ozone flux	+ / + / + eg. [O3] / flux / vis.injury
protect ecosystem structure and function	no violation of chemical and biological critical limits	+ / (+) / (+)

Aquatic ecosystems

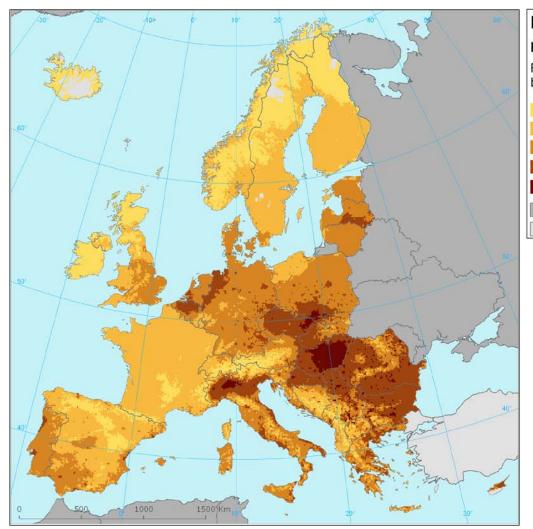
examples

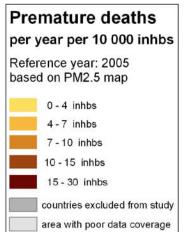
Target	Indicators	chem./biol. data/dose- response
healthy fish populations in (all) sensitive waters	presence of fish populations with normal age structure CL not exceeded	+ / + / + eg. ANC, pH, [AI] / invertebrates, fish
waters providing natural quality prerequisites	ANC > 20 μeq/l	+ / - /
Protect ecosystem structure and function	No violation of chemical and biological critical limits	+/-/+
protect appropriate ecological receptors	good status, favourable conservation status	+/+/+

Working Group on Effects, 28th Session, 23-25 September 2009 COMMON ITEMS

Task Force on Health: Key monitored parameters

Ozone	SOMO35
Particulate matter	Annual average PM2.5 Epi studies (C-R functions)
Heavy metals	biomarkers
POPs	biomarkers

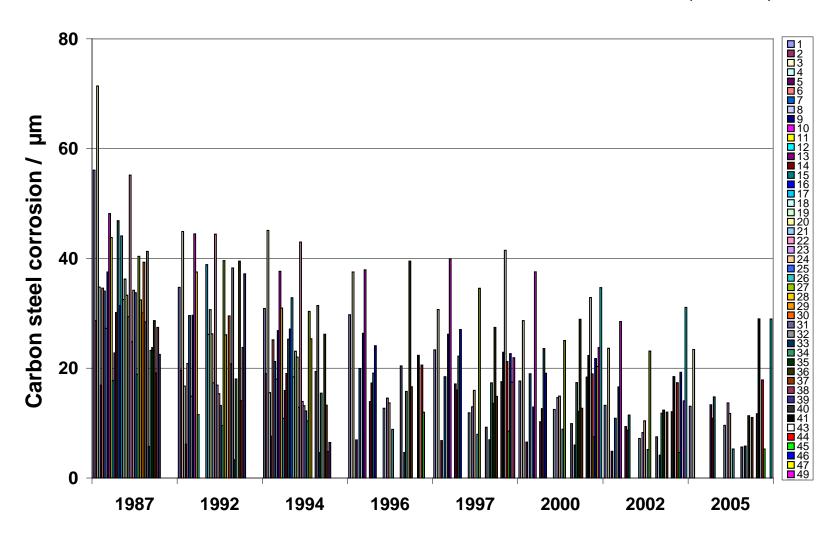

Targets for human health, 2050 and 2020


Year	Pollutants	Target	Comment
2050	Ozone (daily max 8h mean) PM2.5 (annual mean) PM10 (annual mean) NO2 (annual mean) SO2 (annual mean) Pb, Cd, Hg (annual mean)	WHO AQG	Guideline levels may be reduced in the future if new evidence, collected with more sensitive methods, becomes available
2020	Ibid.	WHO AQG	Present pollution trends indicate that the targets are not likely to be reached in many locations of Europe

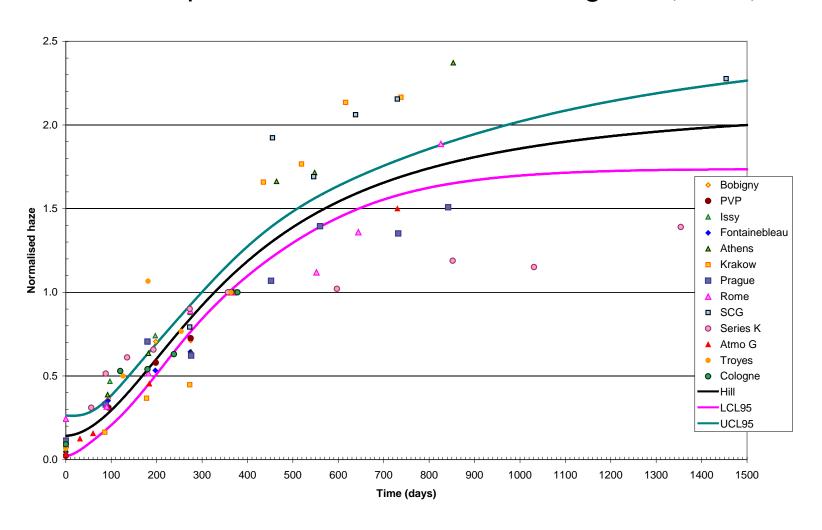
Effect indicator: Premature mortality attributable to PM2.5 (2005)

Total:

492,000 premature deaths per year;


4892,000 YLL

Source: F. De Leeuw, J. Horalek, ETC/ACC, 2009

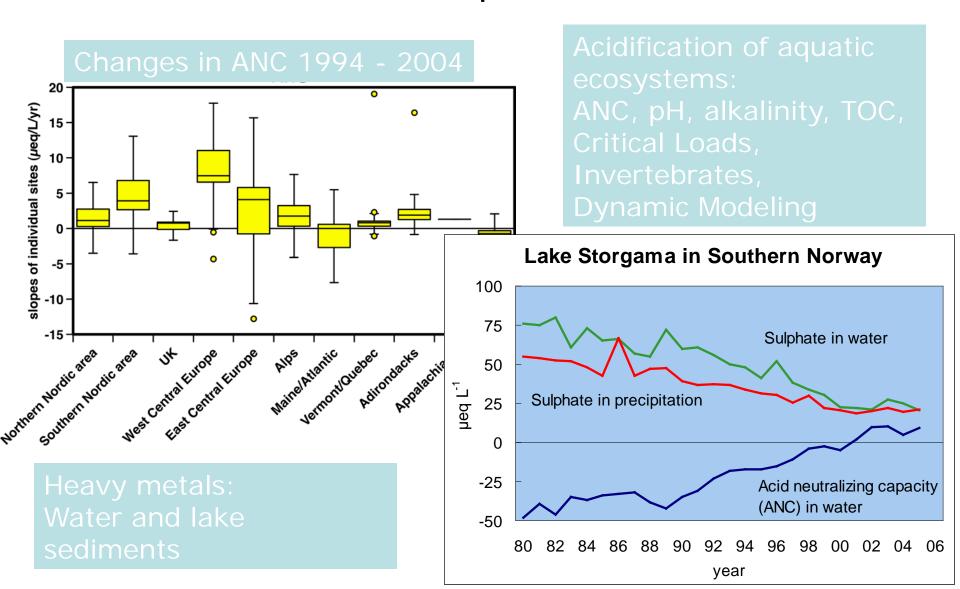

II. Key parameters, Corrosion

Trends in pollution and corrosion of carbon steel, zinc and limestone 1987-2009 (ICP M)

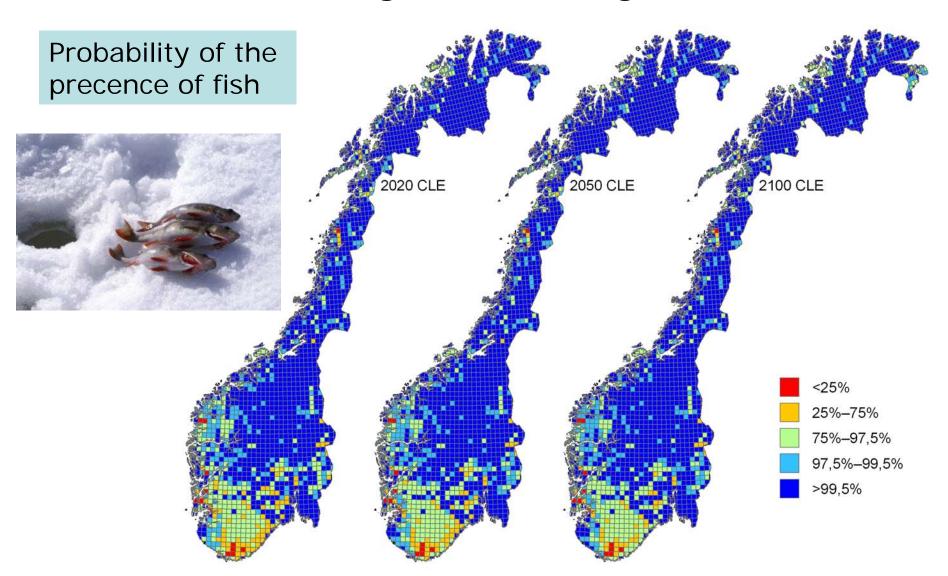
II. Key parameters, Soiling

Soiling of exposed materials and dose-response functions for modern glass (ICP M)

III. Targets / tolerable levels 2020/2050 (ICP M)

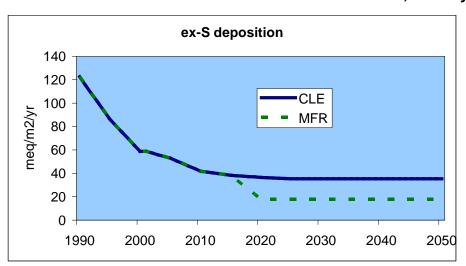

Table 13. Targets for protecting materials of infrastructure and cultural heritage monuments for 2050 and 2020 by ICP Materials

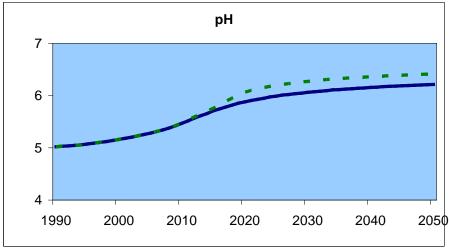
Year	Target	Indicators	Remarks
2050	Corrosion	Carbon steel $<16 \mu m a^{-1}$;	Indicator values correspond to 2.0 times current
		$zinc < 0.9 \mu m a^{-1};$	background levels
		limestone $< 6.5 \mu\text{m a}^{-1}$	
	Soiling	Loss in reflectance (<35 per cent	Tolerable value is based on replies from people
		compared to unsoiled surface	confronted with photographs of different soiling
		after 20 years)	levels of actual monuments
2020	Corrosion	Carbon steel $\leq 20 \mu \text{m a}^{-1}$;	Indicator values correspond to 2.5 times current
		zinc <1.1 μ m a ⁻¹ ;	background levels
		limestone <8.0 μm a ⁻¹	
	Soiling	Loss in reflectance (<35 per cent	ibid. 2050
		compared to unsoiled surface	
		after 10 years)	

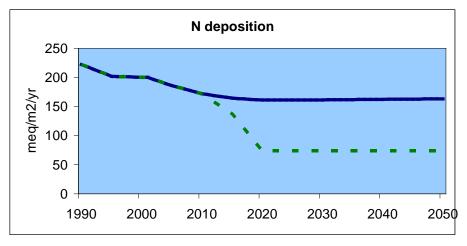

Note: All indicators are calculated with dose-response functions.

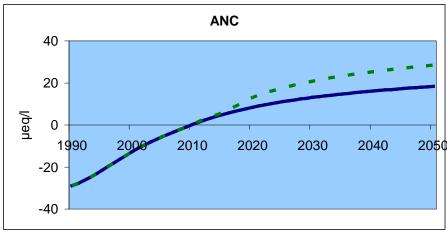
- Every reduction for materials corrosion is important no thresholds or critical loads/levels
- "2020" = current tolerable levels

(i) Selected key monitored and modelled Guidelines parameters




(iii) Quantified policy-relevant effects indicators and links to integrated modelling (ICP W)




(iv) Results and experiences from the "dry run"

Saudlandsvatn, Norway

(ICPF)

1.1 Acidification (examples)

Table 2. Acidification of terrestrial ecosystems

Parameter	ICP Forests
BS	XX
ANC eaching	X
рН	XX
[804]	X
[NO ₃]	X
Total [Al]	X
BC/Al	X
Calculated CL, exceedance, threshold criteria	X, -, -
DM *	_

Note: For ICP Forests, x = level II only, xx = levels I and II.

BS

- Data for 5000 Level I plots (1990s). Validation and evaluation of recently (2006) assessed data is ongoing.
- Data for Level II plots, data base and publication (2000). Repeated assessments for 2006 are presently validated

ANC

- Soil solution data for 250 Level II plots.
- ANC has not been evaluated up to date.

pН

- Soil solution data for 200 Level II plots. Recent evaluation for 56 Level II plots over the period of 2001 -2006.
- Soil solid phase data for around 5000 Level I plots from the 1990s. Validation of repetition for 4000 plots (2006) ongoing.
- Soil solid phase data for 400 Level II plots from the 1990s. Validation of repetition for 100 plots (2006) ongoing.

(ICP F)

1.2 Eutrophication (examples)

Table 3. Eutrophication of terrestrial ecosyste

Parameter	ICP Forests
N _{total}	X
NO ₃ leaching	X
C/N	XX
Ratio of nutrients in foliage (N/P, N/K, N/Mg) for dominant and key species	XX
Calculated CL, exceedance, threshold criteria	X
Empirical CL, exceedance, threshold criteria	-
N concentration in mosses *	n.a.
Effects on biodiversity *	X
DM *	X

N_{total}

- N pools in organic and mineral soil calculated for 515 Level II plots in 2000.
- Repeated assessments for 2006 are presently validated

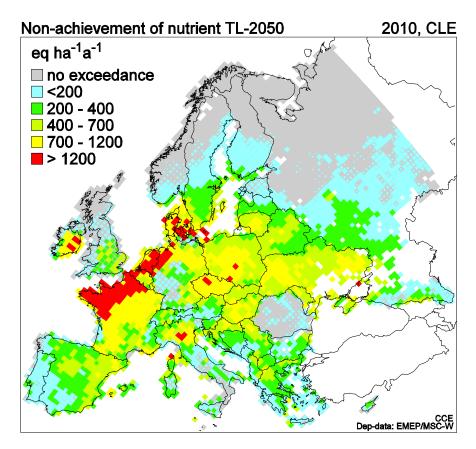
NO₃ leaching

 NO₃ leaching flux has been calculated for 121 Level II sites in 2001

Foliage nutrient ratios

• For 674 Level II plots N/P, N/K, N/MG ratios in the tree foliage were evaluated for four main tree species groups in the year 2000.

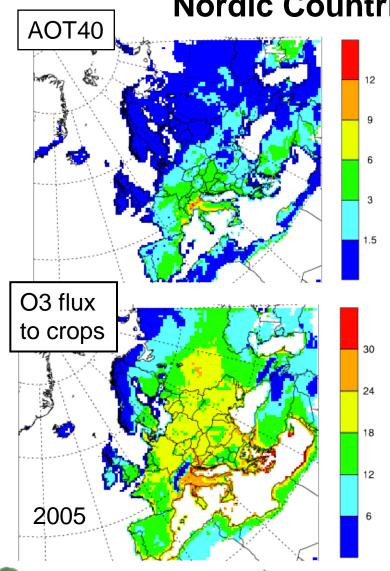
- - -


Aspirational impact targets in 2050: focus on the LRTAP impacts and bio-geochemical processes (CCE/M&M)

- No exceedance of critical loads in 2050?
 This might still violate the underlying criterion (e.g. of buffer capacity) of natural systems by 2050...
- ...No exceedance of critical loads and non violation of the underlying criterion in 2050? find depositions as of e.g. 2020 such that recovery of European ecosystems is obtained in 2050; These depositions are called <u>target loads</u>.
- Target loads are smaller than critical loads!

Exc. of CL eutrophication

Exceedance of nutrient CLs 2010, CLE eq ha⁻¹a⁻¹ no exceedance **<200** 200 - 400 400 - 700 **700 - 1200 =** > 1200 Dep-data: EMEP/MSC-W


Violation TL eutrophication

48 % area exceeded (AAE > 0)

49 % area violated (AAE >0)

Ozone Exposure and Impacts in the Nordic Countries and the Baltic States

ICP VEGETATION

- Expert Meeting was held in Gothenburg, June 2008
- Results to be reported in a Special issue of Ambio

Conclusions:

- O₃ impacts are found on vegetation in northern areas
- Long summer days enhance ozone uptake
- AOT40 underestimates damage
- Ozone flux methods are essential for risk assessments in Northern areas

Source: Study by Per-Erik Karlsson and Hakan Pleijel, Sweden; maps by EMEP

Target Setting for ozone

The ICP Vegetation recommends that **by 2050**, all effects of O₃ on the following should be avoided:

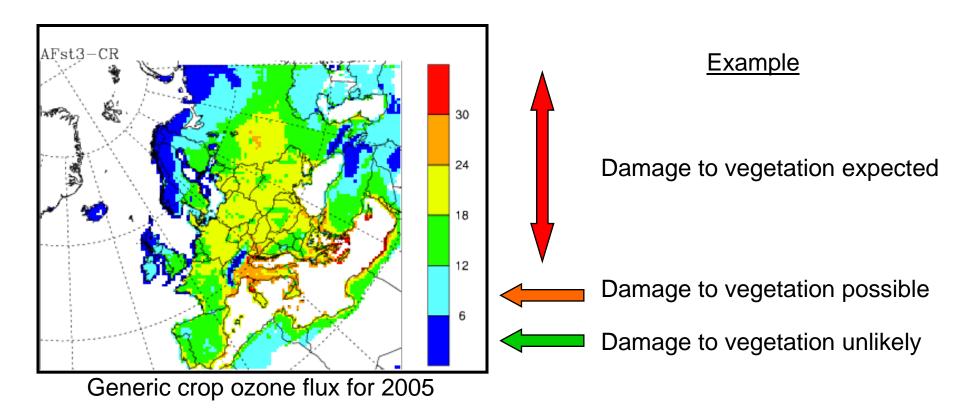
- The yield quantity and quality of agricultural and horticultural crops (including forage)
- The growth of individual species and biodiversity of (semi-)natural vegetation
- The leaf appearance and growth of forest trees
- The ecosystem services (including carbon sequestration) of vegetation

Interim Targets

The "gap closure" principle or other strategies that prioritize areas with high O₃ fluxes, could be useful for defining interim targets.

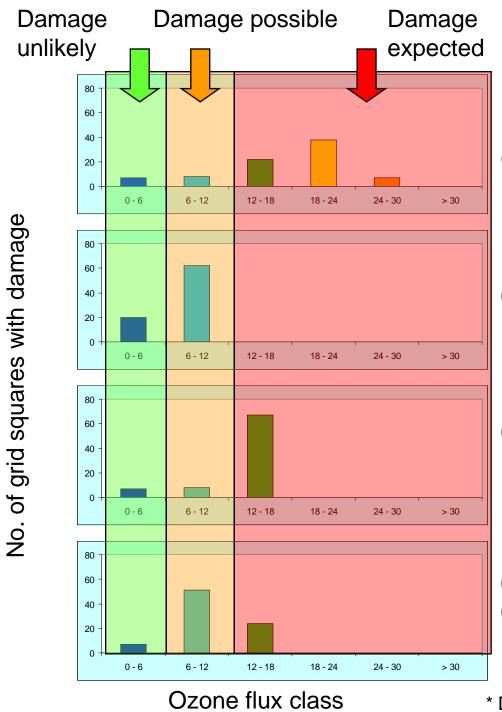
ICP Vegetation Expert Panel Meeting Flux-based assessment of ozone effects for air pollution policy

Ispra, Italy, 9 – 12 November, 2009


Aims and expected outcomes

- To review the needs of the LRTAP Convention in using fluxbased methodology
- 2. To agree flux-effect relationships for use by the LRTAP Convention.
- 3. To recommend the range of applications, including where possible, the setting of new/revised critical levels
- 4. To make recommendations for changes to the Modelling and Mapping Manual (to be approved at ICP Vegetation and ICP Forests TFMs).

Participation: ICP Vegetation, ICP Forests, TFIAM, CIAM, EMEP etc.


For further information, please contact Gina Mills (gmi@ceh.ac.uk)

Example: After the Ispra meeting, we shall be able to identify critical levels for effects for application to generic flux maps

☐ These new generic flux-based critical levels could be applied for interim target setting

Interim Target Setting e.g. beneficial effect of different approaches Current

60% reduction, all grids

60% gap closure, to a target of 12 mmol m⁻²

60% gap closure to a target of 6 mmol m⁻²

^{*} Data from Hayes et al, 2007. The "Evidence Report."

Aspirational targets

Clean air → healthy ecosystems → healthy people

- Healthy forests
- "Living" lakes and rivers
- "Fresh / stainless" crops, vegetables & vegetation
- No damage to materials

Critical loads and levels are not exceeded