M. Amann, I. Bertok, C. Heyes, Z. Klimont, K. Kupiainen, W. Schöpp International Institute for Applied Systems Analysis (IIASA)

Identifying promising measures that could help reducing near-term forcing

State of play of the UNEP BC assessment

38th Session of the Task Force on Integrated Assessment Modelling, Dublin, May 17-19, 2010

Approach for UNEP BC assessment

- 1. Develop emission projections for all substances
- 2. Determine future RF by sector and gas
- 3. Rank measures by net RF of their BC/OC/CO/CH4/SO2 reduction
- 4. Choose a set of efficient measures
- 5. Estimate their overall mitigation potentials

BC inventories 1990-2010 and trends to 2030 GAINS calculation for IEA World Energy Outlook 2009

BC, OC and other PM2.5 emissions IEA baseline and 450 ppm scenario

Emission trends 1990-2030

GAINS calculation for IEA World Energy Outlook 2009

Work in progress!

GWPs used for screening of mitigation measures

	20 yrs	100 yrs	Source
CO2	1	1	IPCC, AR4
CH4	72	25	IPCC, AR4
N2O	289	298	IPCC, AR4
SO2	-140	-40	Fuglestvedt et al., 2009 (ATTICA)
BC	2200 (690-4700)	680 (210-1500)	Bond and Sun, 2006
OC	-240	-75	Bond et al., 2007
VOC	12	3.4	IPCC, AR4
СО	4.5	1.9	IPCC, AR4
NOx	<0	± 0	various sources

CO₂eq emissions by gas 1990-2030, IEA WEO2009 baseline

GWP20 from BC+OC by sector IEA WEO 2009

Global mitigation potential for BC+OC in 2030 Net impact on GWP20 for IEA WEO2009 baseline

Assumptions:

- Only realistically available technical measures:
 - No pellets and ESP for households in developing countries

- No tunnel kilns in India
- Full turn-over of capital stock by 2030
- Feasibility of non-technical measures to be determined

Impacts in 2030:

- -35% from technical measures
- -40% from non-technical measures

Regional mitigation potential for BC+OC in 2030 Net impact on GWP20 for IEA WEO2009 baseline

BC/OC mitigation from a low-carbon scenario GWP20 IEA WEO2009 REF vs 450 ppm scenario

Top-10 mitigation measures for methane in 2030

for IEA WEO2009 baseline

Source: IIASA GAINS

Radiative forcing from long- and short-lived GHGs IEA WEO 2009, baseline and 450ppm scenarios

Some key uncertainties

- Reduction efficiency for BC of improved/new biomass cooking stoves in developing countries
- Emission factors for brick kilns and coke ovens
- Some activity data (e.g., open burning of biomass and waste)
- Quantification of super-emitting vehicles (present and future)
- Quantification of radiative forcing of aerosols
- Feasibility of non-technical measures

Conclusions

- Globally, implementation of 10 measures could lead to a 75% reduction in short-term forcing of BC/OC in 2030.
- However, some of these improvements in RF will be compensated by associated reductions in SO₂ emissions (DPF).
- 50% of this potential emerges in BRICS countries, 33% in other developing countries.
- 30% of the potential depends on reduction efficiency of improved biomass cook stoves for BC. Phase-out of biomass as alternative?
- 45% of the mitigation potential could be achieved through technical measures, 55% require non-technical interventions.
- A health-targeted strategy would not necessarily reduce nearterm forcing, but all BC measures also reduce health impacts (although not as efficiently).