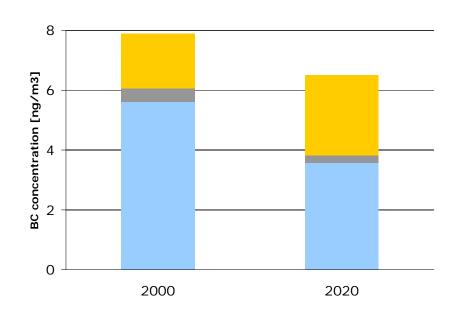
Markus Amann Centre for Integrated Assessment Modelling (CIAM) International Institute for Applied Systems Analysis (IIASA)

The inclusion of near-term radiative forcing into a multi-pollutant/multi-effect framework

37th Session of the Task Force on Integrated Assessment Modelling, Geneva, Feb. 22-24, 2010

Air pollutants have also effects on climate change in the near-term



There are concerns about climate effects of air pollutants:

- 1. Near-term forcing of air pollutants
 - Warming: BC, CH₄, O₃ (i.e., CH₄, CO, VOC, NO_x)
 - Cooling: SO₂, OC
 - accelerates or delays ongoing climate change at the regional scale,
 - changes regional weather circulation and precipitation patterns.
- 2. Increases arctic melting through deposition of (black) carbon

BC concentrations in the Arctic from European sources (preliminary GAINS/EMEP calculations)

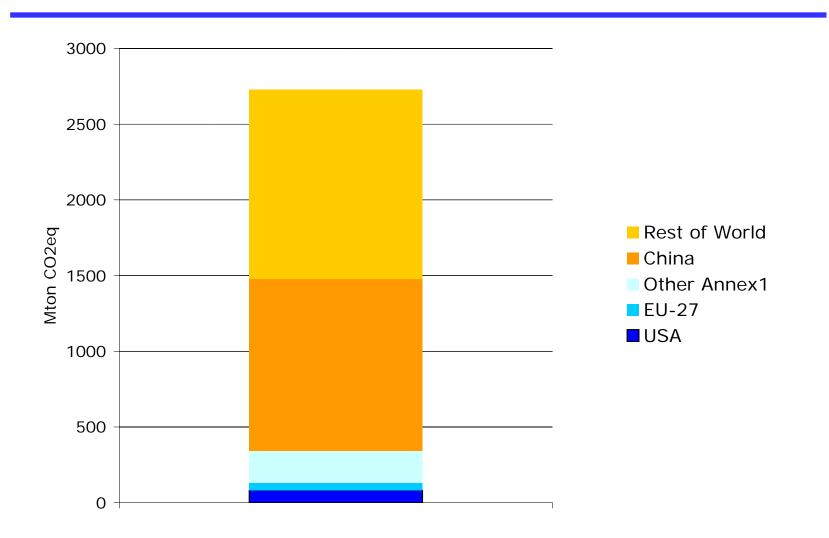
- From wood burning in Norway
- Other Norwegian sources
- Other European sources

How could near-term climate effects be introduced into GAINS?

- Near-term climate impacts could be included into the GAINS multi-pollutant/multi-effect concept as an additional effect of air pollutants
- Relevant precursors: SO_2 , NO_x , NH_3 , VOC, O_3 , PM2.5, BC, OC, CO, CH_4
- Note that many pollutants are co-emitted, and isolated reductions of single pollutants (e.g., BC) are often not possible in reality.
 - GAINS captures these interdependencies!

Extension of the GAINS multi-pollutant/multi-effect framework to include near-term climate impacts

	PM (BC, OC)	SO ₂	NO _x	VOC	NH ₃	СО	CO ₂	CH ₄	N ₂ O	HFCs PFCs SF ₆
Health impacts: PM (Loss in life expectancy)	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$					
O ₃ (Premature mortality)			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		
Vegetation damage: O ₃ (AOT40/fluxes)			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		
Acidification (Excess of critical loads)		\checkmark	$\sqrt{}$		$\sqrt{}$					
Eutrophication (Excess of critical loads)			$\sqrt{}$		$\sqrt{}$					
Climate impacts: Long-term (GWP100)							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Near-term forcing (in Europe and global mean forcing)	√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				
Black carbon deposition to the arctic	$\sqrt{}$									


Potential impact indicators

- As there is significant scientific uncertainty on the quantification of actual climate impacts, indicators should refer to physical indicators that can be quantified with reasonable robustness.
- Potential metrics (impact indicators):
 - 1. Instantaneous radiative forcing of sustained emissions (at regional and global scales)
 - 2. Deposition of (black) carbon in the arctic.
- These metrics would not interfere with UNFCCC objectives (long-term stabilization, reflected through 100 years GWP)
- As they do not involve CO₂, no conflict between control of air pollutants and CO₂ mitigation could be constructed

CH₄ mitigation potential < 40 €/ton CO₂eq 2020, by World region (GAINS estimate)

Potential approaches for GAINS optimization for CLRTAP protocol

Starting from an energy scenario that achieves given (long-term) climate objectives (expressed through GWP₁₀₀):

Option 1:

- Optimize for environmental targets on
 - health and ecosystems (as before),
 - near-term forcing and BC deposition to the arctic.

Option 2:

- Optimize for environmental targets on
 - health and ecosystems (as before),
 - under the condition that near-term forcing and BC deposition to arctic does not deteriorate

Work elements

- Development of cost curves for BC, OC, CO (CIAM)
- Quantification of source-impacts relationships (between national emissions and regional forcing)
 - Calculation of source-receptor relationships between (country) precursor emissions and (grid) column concentrations (MSC-W)
 - Estimation of (regional) radiative forcing from (grid) column concentrations (Uni.Oslo)
- Extension of GAINS optimization routine (GAINS)

Prototype implementation feasible in 2010 (depending on available resources!), full implementation and validation thereafter

Conclusions

- Near-term forcing and carbon deposition to the Arctic could be included as an additional effect of air pollutants into the existing multi-pollutant/multi-effect framework
- Suggested metrics:
 - Instantaneous radiative forcing at the regional/global scale
 - Carbon deposition to the Arctic
- A prototype version could be developed by mid 2010 (if funding is available)
- In a first step, such information could be used to prioritize reductions of precursor emissions to reduce PM2.5 levels