Analysis of the possibilities of SO2 and NOx emission trading

TFIAM 38th session

Tuesday 18th May 2010

Presentation by Alistair Ritchie, Entec UK Ltd

Agenda

- Objectives & overview
- Environmental constraints
- Installation database
- Reference scenario
- Options for trading scenarios
- Models
 - Trading Simulation Model
 - Health & Environmental Modelling
- Results

Entec

Objectives of project

tec

- To assess environmental, economic & social impacts of various possible designs of an ETS for SO2 and NOx under certain EU-wide rules for IPPC installations (instead of individual BAT-based permitting)
- Health & environmental impacts not to exceed those under current legislation (IPPCD, LCPD, NECD, AQD) and IED Proposal (Reference scenario)
- Constraints due to potential NECD 2020 ceilings to be assessed, as well as benefits of flexible ceilings
- Provide insight on whether a trading mechanism for SO2 & NOx in the EU would be appropriate. If so, under which rules, safeguarding environmental objectives & ensuring practicability & enforceability

Overview of approach

Entec

Environmental constraints

BAT equivalence

- Emissions trading should not lead to increased overall emissions compared to IED proposal
- Targets equivalent to applying BAT-based permit conditions
- BAT-AEL ranges different options considered
 - Upper BAT-AELs
 - Intermediate BAT-AELs (Upper -20%)
 - Lower BAT-AELs

• NECD

liec

- 2010 ceilings part of BAU scenario
- Impact of potential 2020 ceilings needs to be considered
 - Assuming IPPC installations meet cost-optimised targets from GAINS
 - Ref scenario emissions (without flexibilities) 16% NOx, -6% SO2 [GAINS optimisation to meet TSAP / GAINS CP]
- Option for flexible national ceilings (+10% NOx, +20% SO2)

Air quality limit values

- IED Proposal requires compliance with AQD limit values
- Assessment against SO2, NO2, PM10, PM2.5 limit values

Installation database

Sectors

Data

Entec

- Source location & stack characteristics
- Current emissions
- Current fuel type and quantity
- BAU abatement installed / planned (LCPD, IPPCD, National legislation, etc)
- Beyond BAU abatement options and costs
- Activity projections (capacity, fuel, GVA)

Data sources

- Consultation with MS and sector specialists
 - MS policy / regulatory contacts
 - EU industry associations
 - BREF review authors
- Databases & studies
 - LCPD inventories; EPER; CoalPower
 - Supporting: other Entec / partner studies, in-house data & contacts; PRIMES (activity trends on basis of GVA or fuel consumption/ capacity)
- Expert knowledge of project team (Entec, Okopol, Garrigues, IHE)

Reference scenario

IED Proposal

- text on which Council reached political agreement June 2009

• Approach for LCPs

- Applied 'minimum requirement' ELVs (Annex V)
- Accounted for:
 - Minimum desulphurisation rate option
 - Less stringent ELVs for LCPs at refineries and plants firing gases other than natural gas
- Not accounted for:
 - Derogation for certain district heating plants
 - Low load factor and limited life derogations
 - Transitional National Plan
- If BAU emissions below ELVs, applied BAU emissions

• Approach for non-LCPs

 Assumed permit ELVs based on techniques equivalent to Upper BAT-AELs from latest BREFs

Options for trading scenarios (1)

Type of Scheme

(historical)

(actual)

Baseline & Credit: Design Risks

Allocation = Emission rate * Production

Cap and Trade (C&T)

Allocation = Emission rate * Production

Baseline and Credit (B&C)

Creating the environment for business

Entec

Options for trading scenarios (2) Allocation level

Type of scheme	C&T	B&C
Level	Сар	Performance standard rate (PSR)
Upper BAT-AEL	Yes	Yes
Intermediate BAT-AEL (Upper -20%)	Yes	Yes
Lower BAT-AEL	Yes	Yes
Sum of potential NECD 2020 ceilings	Yes	
Reference scenario emissions	Yes	
Dutch NOx trading scheme approach		Yes

Entec

Options for trading scenarios (3) Allocation Method

Entec

All allocation methods apply to all types of trading schemes

Options for trading scenarios (4) Sectoral coverage

- All IPPC installations covered by Revised EU ETS
- All IPPC installations covered by Revised EU ETS (excl 20-50 MW combustion installations)

• Installations that meet specific coverage criteria, eg

- Average emissions per installation above certain % of average across all sectors (50% in this study)
- Total emissions per sector above certain % of emissions from all sectors (1% in this study)

Entec

Options for trading scenarios (5) Trading zones

All EU27 Member States together (ie one overall zone)

An intermediate level

 Based on large optimal control areas from TNO study: North West, North East and South

Each individual Member State (ie 27 individual zones)

Entec

Options for trading scenarios (6) Other

- Opt-ins and opt-outs
- Banking & borrowing
- Phase duration
- New entrants & closures
- Monitoring, reporting and verification (MRV)

Entec

Trading Simulation Model Approach to modelling

 Aims to meet emission limits imposed on it while minimising compliance (abatement) costs

Key inputs

- BAU emissions and abatement for each installation
- Emission limits and reduction requirements:
 - Under ref scenario emission limits apply at installation level
 - Under C&T and B&C overall allowance pool limit applies at trading zone level
 - NECD ceilings apply at MS level (2010 ceilings are BAU; potential 2020 ceilings apply to some scenarios)
- Beyond BAU emission reduction measures (abatement potential and costs)

Key outputs

ec

 Abatement measures, emissions reductions and costs at each installation

Health & environmental impact modelling (1)

EMEP model (Met.no)

- Applications
 - 1. Source–receptor analysis to understand environmental sensitivity and drivers for impacts
 - 2. Detailed AQ, health and env impact modelling of trading scenarios
- Emissions data
 - All key pollutants inc SO2, NOx and primary PM
 - IPPC installations from database
 - Non-IPPC sources EMEP / TNO estimates
- Outputs:
 - 50x50km2 for source-receptor analysis;
 - 10x10km2 for impact modelling
 - Includes secondary particulates from SO2 and NOx
 - Ecosystem damage: exceedances of critical loads
 - Health damage: YOLL from PM; O3; AQ impacts of SO2, NO2, PM2.5, PM10
 - Areas with exceedances of AQ LVs
 - Maps of changes in AQ vs Ref scenario

Health & environmental impact modelling (2)

Monetary valuation

- Health
 - PM related impacts
 - Years of Life Lost (YOLL) * valuation (see below)
 - Low estimate based around CAFE Value of Life Year (VOLY) €52k
 - High estimate based around CAFE Value of Statistical Life (VOSL) €2m
 - Ozone related impacts
 - SOMO35 (Sum of ozone means over 35ppb) * population * valuation factor (0.0027)
- Crops
 - Ozone (from NOx) related impacts on crops covered
- Materials

Creating the environment for business

Entec

Costs vs reference scenario

Entec

Emissions vs reference scenario

Entec

Trading zones - NOx

Entec

Trading zones – SO2

Entec

Impact of NECD 2020 ceilings - NOx

Entec

Impact of NECD 2020 ceilings – SO2

Entec

Air quality impacts

- Relatively limited impacts on compliance with air quality limit values in comparison to the reference scenario
- All trading scenarios estimated to result in fewer areas of exceedence of AQ limit values compared to BAU
- Maps in Appendix A show areas with increased and decreased (mainly) ambient air concentrations compared to reference scenario
- Under IED Proposal, in event of exceedances, additional measures will be required to safeguard air quality

Sensitivity analysis

- Projected BAU activity growth rates
- BAU & ref scenario abatement assumptions for cement sector
- Costs of key abatement options in ref scenario
- Investment sensitivity analysis

 Impacts of SO2 and NOx abatement measures on CO2 costs

Creating the environment for business

Entec

Thank you for your attention

Contact details for further information:

Alistair Ritchie Entec UK Ltd Tel +44 1606 354851 Email ritca@entecuk.co.uk

