New developments in the methodology for Cost-Benefit Analysis

Mike Holland <u>mike.holland@emrc.co.uk</u>, Fintan Hurley, Brian Miller and Anne Wagner

Benefits analysis: Methods

- Developed since 1991 ExternE project and follow on work
- Policy analysis since 1996
 - Acidification Strategy
 - Ozone, NEC Directives
 - Daughter Directives on air quality
 - Clean Air For Europe / Thematic Strategy
 - UNECE CLRTAP Protocols
 - etc.

Benefits analysis: Pollutants considered

 Effects of releases of NH₃, SO₂, NOx, VOCs, PM on concentrations of...

 ...primary and secondary particles, ozone, SO₂, etc.

Specific effects of trace elements not explicitly accounted for

Benefits analysis: Receptors considered

- Earlier work:
 - Human health (primary and secondary particles and ozone)
 - Mortality
 - Morbidity
 - Materials (SO₂)
 - Crops (O₃)
 - Ecosystem effects quantified only in terms of exceedance of critical loads and levels for nutrients and acidity

For this presentation we focus on developments in:

- Mortality assessment
 - Provides the largest benefits
- Ecosystem assessment
 - The most significant omission from past analysis

Mortality assessment (1)

- Long term exposure to fine particles
 - Metric: annual average PM_{2.5} with no threshold
 - Risk factor: 6% change in mortality rate / 10µg.m⁻³
 - Quantified for population over 30 years
 - Analysis based on life table methods
 - Result in terms of life years lost and associated deaths

Mortality assessment (2)

- Short term exposure to ozone
 - Metric: SOMO35
 - Risk factor: 0.3% change in mortality rate / 10µg.m⁻³
 - Quantified against all cause mortality
 - Analysis based directly on mortality rate
 - Result in terms of associated deaths

Mortality assessment (3)

- Infant mortality from PM exposure
 - -1 month<children<1 year
 - Metric: annual average PM_{2.5} with no threshold
 - Risk factor: 4% change in mortality rate / 10µg.m⁻³
 - Analysis based directly on mortality rate
 - Result in terms of associated deaths

Long term exposure and mortality: Alternative models investigated

- Long term exposure to PM_{2.5} linked to all cause mortality
 - CAFE-CBA, EC4MACS to date, USEPA, ExternE, old WHO Global Burden of Disease
- Long term exposure to PM_{2.5} and ozone linked to cause specific mortality
 - PM_{2.5}: lung cancer and cardiovascular mortality
 - Ozone: respiratory mortality
 - New WHO Global Burden of Disease

Proposal for NEC and Gothenburg revisions

- Continue with CAFE model based on allcause mortality
- Sensitivity analysis using cause-specific mortality
 - Proposal accepted by TFH
 - Could show a greater role for ozone than previously described

Other issues considered

- Mortality
 - Conversion of the cause-specific data into usable response functions for our work
 - Lag between exposure and effect
 - Effect of variation in population structure in different countries, at different times
 - Differentiation between particle types
- Morbidity functions
 - Recent European research (Sapaldia, etc.)

Valuing mortality

- CAFE position
 - 2 estimates for VOLY (€52k, €120k)
 - 2 estimates for VSL (€0.98, €2M)
- Recent work
 - EC-DG Research funded NEEDS Project
 - New estimate for VOLY of €40k

Position agreed with Commission

- Retain CAFE-CBA position
- Apply €40k estimate in additional sensitivity analysis

Treatment of uncertainty

- Well developed already for the benefits component of the CBA
- Further work on uncertainties generally across related models being undertaken this year under the EC4MACS Project

Treatment of ecosystems

 Still no great progress in valuing damage to ecosystems

 Focus on moving analysis closer together and on making ecosystem effects more visible as part of the analysis

Examples

- New approaches from CCE Status Report 2009:
 - Quantification of risks to Natura 2000 sites
 - Development of relationships with ecosystem service indicators
 - Use of species diversity indicators
 - etc
- Use of photographic evidence to highlight the type of damage occurring

Summary of progress

- Consideration given to new health response functions
- Short cut methods being developed for materials and crop damage
- Moving towards better integration of ecosystem effects (though full incorporation of them into CBA remains some distance away)
- Development of more integrated uncertainty assessment via EC4MACS

Effect on results

- Core analysis:
 - Results will not change a great deal
 - Some higher emphasis on ecosystem effects, but still not monetised
- Sensitivity analysis
 - Potentially greater role for ozone via causespecific mortality analysis