

Ozone pollution: Damage to ecosystem services

Harry Harmens, Gina Mills

ICP Vegetation Programme Coordination Centre CEH Bangor, UK

http://icpvegetation.ceh.ac.uk

Benefits of air pollution control for biodiversity and ecosystem services

Working Group on Effects

Co-ordinated by ICP Vegetation PCC with contributions from all relevant ICPs/JEG

Review and case studies of current knowledge:

- Dose-response relationships and modelling of nitrogen impacts on plant diversity/ species composition; exceedance of nitrogen critical loads
- Dose-response relationships and modelling of ozone impacts on crop yield (including economic valuation) and other ecosystem services; ozone impacts on biodiversity
- Mercury accumulation in soil and fish
- Chemical and biological recovery from acidification in lakes

http://www.unece.org/env/lrtap/workinggroups/ wge/welcome.html

ES, biodiversity & human well-being

Millennium Ecosystem Assessment

Ecosystem services:

• **Supporting** ('underpinning role') (e.g. biomass production, soil formation, nutrient and water cycling)

Provisioning

(e.g. food, fresh water, fuel, wood)

Regulating

(e.g. water purification, water and climate regulation, pollination)

• Cultural

(e.g. education, recreation, aesthetic)

LIFE ON EARTH - BIODIVERSITY

HUMAN WELL-BEING

'Biodiversity enhances the ability of ecosystems to maintain multiple functions' (Maestre et al. (2012) Science 335: 214-218)

'Species-richness has positive impacts on ecosystem services'

(Gamfeldt et al. (2013) Nature Communication 4: 1340

Ozone: Ecosystem Services & Biodiversity

Mills, Wagg & Harmens (2013) http://icpvegetation.ceh.ac.uk

□ Supporting services (ecological processes):

- Primary production (and C cycling)
- Nutrient cycling
- Stomatal functioning (and water cycling)

Provisioning services:

- Crop production
- Timber production

Regulating services:

- C sequestration and global warming
- Air quality (via effects on vegetation)
- Methane emissions
- Water cycling
- Flowering, pollination, insect signalling
- □ Cultural services (leisure, recreation, amenity)
- **Biodiversity** (including case-study Mediterranean)

□ Valuing ozone impacts on ecosystem services

TFIAM workshop, Zagreb, Oct. 2013

Ozone risk assessment

Emberson et al. (2000) http://sei-international.org/do3se

AOT40 forests in 2000

Ozone concentration (AOT40) – EU

Ozone flux or Phytotoxic Ozone Dose (**PODy) – LRTAP Convention**

Calculated from hourly mean:

- Ozone concentration
- Light intensity
- Temperature
- Humidity (VPD)
- Soil moisture

Stomatal functioning

3

Stomatal ozone flux or Phytotoxic Ozone Dose (**PODy)** determines impact

No clear pattern impact of ozone on stomata, except tendency for opening to occur at lower concentrations

	Total	No effect	Sluggish	Increased	Stomatal
	number		control	opening	Closing
Crops (no. of species)	16	1	2	1	12
Crops (no. of experiments)	22	2	2	1	17
Trees (no. of species)	44	12	4	13	15
Trees (no. of experiments)	60	12	10	17	21
Grasslands (no. of species)	8	2	1	2	3
Grasslands (no. of expts.)	11	2	1	5	3
Total (no. of species)	68	15	7	16	30
Total (no. of experiments)	93	16	13	23	41
Ozone range (25 th to 75 th		35 – 80	70 – 120	50 – 90	59 – 100
percentile)		ppb	ppb	ppb	ppb
Mean ozone concentration		59 ppb	91 ppb	67 ppb	89 ppb

Ozone and water cycling: catchment scale

SE USA, Appalachian region

Sun et al. (2012) GCB 18: 3395-3409

- Ozone contributes to variation in late season streamflow by as much as 23%
- Ozone at near ambient concentration reduces stomatal control

Consequences:

- □ Increase plant water use & transpiration, reduced stream flow
- □ Loss of stomatal sensitivity will increase drought frequency and severity, affecting ecosystem hydrology and productivity, and has implications for flow-dependent aquatic biota

Regulation air quality and climate

Meta-analysis Wittig et al. (2009): current ambient ozone reduces tree biomass by 7% (compared to pre-industrial ozone levels)

- \Box O₃: third most important GHG
- Indirect radiative forcing via effects on vegetation could contribute as much to global warming as direct radiative forcing effect of ozone (positive feedback)
 Sitch et al., Nature (2007)

Also consequences for global water cycle (see previous slide)

TFIAM workshop, Zagreb, Oct. 2013

Food security

Ozone damage to leaves of salad crops reduces their market value

In 2000, ozone pollution reduced wheat yield by 14%, a loss of €3.2 billion in EU27+CH+NO

Mills & Harmens (2011) Ozone pollution: A hidden threat to food security.

In 2000, ozone pollution reduced tomato yield by 9%, a loss of €1.0 billion in EU27+CH+NO

Flowering and seed production

Ozone can promote early flowering, affecting the synchronisation of pollinators and flowers

□ Meta-analysis Leisner & Ainsworth (2012) Global Change Biology 18: 606-616:

Current ambient ozone decreases seed number (-16%), fruit number (-9%) and fruit weight (-22%), but trend towards increased flower number and weight. Enhanced ozone, compared to current ambient ozone, decreases seed yield by 27%.

TFIAM workshop, Zagreb, Oct. 2013

Research recommendations

- A systematic review and data mining exercise for ecosystem services to derive generic response functions for quantifying ozone effects
- Based on this review, identify services for which there is insufficient experimental data to derive response functions.
 Examples of further experimental research include:
 - impacts of ozone on C sequestration in roots and soils
 - ozone impacts in a future climate (warmer, higher CO₂)
 - large-scale field experiments on intact ecosystems
 - epidemiological analysis of field measurements to detect spatial patterns and temporal trends
- Further research on economic evaluation methods to aid cost-benefit analysis for current and future scenarios, where possible and appropriate

