

Modelling personal exposure to PM_{2.5} in the context of integrated assessment modelling

39th TFIAM Meeting 2011 Stockholm

Alexandra Kuhn¹

Lydia Gerharz², Aileen Yang⁵, Miranda Loh^{3,4},

Araceli Sanchez Jimenez⁶, Sandra Torras Ortiz¹, Joachim Roos¹, Rainer Friedrich¹

Institute for Energy Economics and the Rational Use of Energy, University of Stuttgart, Germany
 Institute for Geoinformatics, University of Münster, Germany

3) University of Arizona, USA 4) National Institute for Health and Welfare, Finland

5) Norwegian Institute for Air Research, Norway

6) Institute for Occupational Medicine, Scotland

Outline

- Introduction
- Methodology
- Results
- Conclusion

Introduction

 Until now: Estimation of health effects by use of concentration response functions based on annual average concentrations

 New: Estimation of the Exposure taking into account the infiltration and the time spent in micro-environments; population subgroups

Alexandra Kuhn et al.

Methodology

- Concentration in different micro-environments by use of different models
- Weighed by time spent in the different microenvironments
- Urban increment for grid cells (EMEP 50x50 km²) with cities >50,000 inhabitants
- Overall model: LAMA (TooL for Air pollution exposure Modelling and Assessment)
 Parameters: country level; concentration: grid based

Concentration indoors I

- Indoor sources (homes)
 - i. Background sources like small pieces of skin, dust, vacuum cleaning, cooking, candles etc.
 e.g. 1,500 µg/h (1,400 µg/h s.d.) for DE (based on Basel)
 - ii. Wood burning from fireplaces or similar in areas designed for living (not basements)

2,690 μ g/h, e.g. 5% of population is using fireplaces in DE

iii. Environmental tobacco smoke (ETS)

13,800 µg/h (1,800 µg/h s.d.)

e.g. 39% smoking for DE are exposed to ETS

(weighted subgroup mean)

Fraction of population exposed to biomass: model TIMES; ETS source: Özkaynak et al. (1996); Background sources: Hänninen et al. (2004); Biomass source strength: McDonald et al. (2000) + Sternhufvud et al. (2004); Fraction of population exposed to ETS: CPSR (1995)

Concentration indoors II

 $c_{in,ss}$ = indoor concentration, steady state [µg m⁻³] p = penetration coefficient [-] a = air exchange rate [h⁻¹] V_{in} = volume indoors [m³] k = deposition loss rate [h⁻¹]

Example of indoor concentration (DE):

 $p = 1 \qquad a = 0.83 \ h^{-1} \qquad V = 310 \ m^3 \\ k = 0.39 \ h^{-1} \qquad c_{out} = 10 \ \mu g/m^3$

 \rightarrow c_{in} \approx 25 µg/m³

Model: Based e.g. on: Koutrakis et al. (1992); V and fraction of population exposed to biomass: model TIMES; p, k and ETS source: Özkaynak et al. (1996); a and background sources: Hänninen et al. (2004); biomass source strength: McDonald et al. (2000) + Sternhufvud et al. (2004); fraction of population exposed to ETS: CPSR (1995)

Concentration travel

- Concentration when travelling: no distinction is made yet between modes of travelling as the time-use data does not allow for this
- Traffic enrichment factor: 2.48 (2.13 s.d.)*

Example of concentration during travel: $c_{out} = 10 \ \mu g/m^3 \rightarrow c_{travel} \approx 25 \ \mu g/m^3$

* Average of different studies

Urban increment

An adaptation of the model developed by Torras Ortiz et al. (2011) is used:

$$C_{i \ urban} = \varpi_i + \phi_i \frac{E_{iUE}}{A_{UE} \cdot u_{avg}} + \gamma C_{i \ rural}$$

where

 C_i urban = Urban increment of pollutant i.

 E_{iUE} = Total emission of pollutant i within the urban entity in tons.

 A_{UF} = Urban entity area in km².

 u_{avg} = Urban entity average wind speed in m/s.

 $C_{i rural}$ = Rural background concentration of pollutant i in $\mu g/m^3$

 ω_i , ϕ_i , and γ_i = Multiple-regression parameters for pollutant i.

Due to the lack of detailed urban emissions data, a straightforward application of the model described above was not feasible for estimating the PM urban increment for cities outside Germany. Alternatively, a hierarchical clustering analysis was carried out to transfer the urban increment values to other European cities.

Torras Ortiz, S. et al. (2011). "A modelling approach for estimating background pollutant concentrations in urban areas" paper submitted for publication.

Time use data MTUS (example Germany)

Multinational Time Use Study, Versions World 5.5.3, 5.80 and 6.0 (released October 2010). Created by Jonathan Gershuny and Kimberly Fisher, with Evrim Altintas, Alyssa Borkosky, Anita Bortnik, Donna Dosman, Cara Fedick, Tyler Frederick, Anne H. Gauthier, Sally Jones, Jiweon Jun, Aaron Lai, Qianhan Lin, Tingting Lu, Fiona Lui, Leslie MacRae, Berenice Monna, José Ignacio Giménez Nadal, Monica Pauls, Cori Pawlak, Andrew Shipley, Cecilia Tinonin, Nuno Torres, Charlemaigne Victorino, and Oiching Yeung. Centre for Time Use Research, University of Oxford, United Kingdom.

Equation for "personal" exposure

Exposure in micro-environments

Alexandra Kuhn et al.

TFIAM Meeting Stockholm

Exposure of subgroups

Preliminary results!!!

Exposure of population subgroups to PM2.5 in United Kingdom all individuals, including ETS and biomass

PM2.5 exposure [µg/m³]

Exposure response functions

- Concentration response functions (CRFs) for PM_{2.5}
 based on outdoor air background concentration, do not capture the health effects from indoor sources
- CRFs can be scaled to exposure response functions (ERFs) based on the relationship between background concentrations and personal exposure to PM_{2.5} experienced indoors from outdoor sources (dividing by 0.7)
- Assume that these ERFs can be applied to estimate the health effects of PM_{2.5} from indoor and outdoor sources

	N	Measure "Insulation"				
	•	Decreasing penetration, air exchange rate and deposition loss rate in homes; <i>Example DE</i>				
Scenario		Mean exposure [µg/m³]	Δ DALYs	Δ Costs [Mio. EUR ₂₀₁₀]		
BAU (w/o BGR)		~18.7				
Insulation (w/o BGR)		~19.9	+85,600 $(\rightarrow \text{ in addition})$	+8,838 (\rightarrow in addition)		
BAU (only outdoor	r)	~8.9				
Insulation (only outdoor	r)	~8.8	-7,130 $(\rightarrow \text{ avoided})$	-736 (→ avoided)		
Alexandra Kuhn e	et al.	TFIAM Me	eeting Stockholm	February 2011		

Conclusions

- Exposure modelling provides a means of better assessing mitigation measures with direct effects on exposure (e.g. changes in barriers between outdoor and indoor micro-environments)
- Indoor sources constitute a large part of the total exposure, especially ETS
- Largest part of the exposure experienced at home
- Distinguishing between subgroups of similar behaviour gives bigger differences than age, gender and working status

Scenario development

- Developed scenarios on EU level for the projects HEIMTSA / INTARESE
 - i. Distinguish between old, new and renovated houses with different assumptions for air exchange rate and penetration
 - ii. Include also changes in dwelling volume and use of biomass for space heating (TIMES model, Markus Blesl, Stuttgart)

Plans + open questions

• Enhance ETS modelling:

- i. Collect newer data (after smoking ban)
- ii. Lives with smoker yes/no \rightarrow active smokers/non-smokers
- Enhance biomass burning:
 - i. Better distinction between appliances (fireplaces, pellets etc.) and if used for leisure or main heating purpose
 - ii. More information needed on emission factors to indoors and percentage of biomass usage for which purpose
- Work: indoor sources? Include non-office work
- Include different modes of traffic
- Enhance assumptions underlying the ERFs

References

- Koutrakis et al. 1992: Source Apportionment of Indoor Aerosols in Suffolk and Onondaga Counties, New York. Environ Sci Technol, 26, 521-527.
- Model TIMES: energy model: Markus Blesl et al. University of Stuttgart, IER
- CPSR (1995). Crossborder purchases, smoking habits and cancer risks. March-April. European Commission. (Eurobarometer 43.0.).
- Hanninen, O. O., E. Lebret, et al. (2004). "Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities." Atmospheric Environment 38(37): 6411-6423.
- Hänninen, O. O. Lebret, E., Ilacqua, V., Katsouyanni, K., Künzli, N., Srám, R. J. & Jantunen, M. (2004) Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmospheric Environment, 38(37), 6411-6423.
- McDonald JD et al. 2000. Fine Particle and Gaseous Emission Rates from Residenctial Wood Combustion. Environ. Sci. Technol. 34:2080-2091
- Özkaynak, H, Xue, J, Weker, R, Butler, D, Koutrakis, P, Spengler, J, The particle TEAM (PTEAM) study: analysis of the data. Technical report. U.S. Environmental Protection Agency: Research Triangle Park, NC, 1996;Vol. III
- Sternhufvud C. et al. 2004. Particulate matter emissions and abatement options in residential wood burning in Nordic countries. ANP 2004:735 Nordic Council of Ministers, Copenhagen.

Alexandra Kuhn et al.

Thank you very much for your attention!

Acknowledgements:

INTARESE: Integrated assessment of health risks of environmental stressors in Europe (FP6- 018385)

HEIMTSA: Health and environment integrated methodology and toolbox for scenario assessment (FP6-036913)

Urban increment

- Urban population: 75% of the European population and by 2020 it will be for some countries even 90%¹.
- For several pollutants, higher concentrations levels are commonly found within urban areas.
- The number of people affected by elevated pollutant concentrations is notably higher in urban areas than in rural environments.
- Due to its relevance, the urban increment (i.e., the difference between regional and urban background pollutant concentrations) should be included in the analysis.

¹ Urban Sprawl in Europe. European Environment Agency, Report 2006-4

TFIAM Meeting Stockholm

Pollutant Concentration in µg/m³ The typically higher pollutant levels in urban areas for most pollutants can be referred as urban increment, i.e., the difference between regional and urban background pollutant concentrations

DE - F15

Alexandra Kuhn et al.

Alexandra Kuhn et al.

TFIAM Meeting Stockholm

DALYS: duration in fraction of year, DALY= weight * duration * # cases

endpoint	weight	duration	pollutantID
Bronchodilator Usage Adults and Children	0.22	0.00274	PM10
Cardiac Hospital Admissions	0.71	0.038	PM10
ChronicBronchitis	0.099	10	PM10
Infant Mortality	1	80	PM10
Lower Respiratory Symptoms Adults and Children	0.099	0.00274	PM10
Respiratory Hospital Admissions	0.64	0.038	PM10
Minor Restricted Acitvity Day	0.07	0.00274	PM25
Restricted Acitvity Day	0.099	0.00274	PM25
Work Loss Day	0.099	0.00274	PM25
Years Of Life Lost chronic. Mortality	1	1	PM25

Air pollutants – monetary values (EUR 2010)

Health End-Point	Central	per case
Increased mortality risk (infants)	4,485,731	Euro
New cases of chronic bronchitis	66,000	Euro
Respiratory hospital admissions	2,990	Euro
Cardiac hospital admissions	2,990	Euro
Work loss days (WLD)	441	Euro
Restricted activity days (RADs)	194	Euro
Minor restricted activity days (MRAD)	57	Euro
Lower respiratory symptoms	57	Euro
Medication use / bronchodilator use	80	Euro
Life expectancy reduction - Value of Life Years chronic	59,810	Euro