



## Flexibility in air policies

Quantitative analysis of welfare gains

Corjan Brink, Frank de Leeuw (RIVM), Hans Eerens, Herman Vollebergh



## Flexibility in air pollution policies

Why?

- emission ceilings => improvement air quality
- reflect assessment of
  - cost-effectiveness
  - cost and benefits (implicitly/explicitly)
- given assumptions about:
  - future economic development (baseline)
  - abatement cost

#### But:

- many uncertainties
- targets for improvement not at any cost



## Key question

- How can we set proper air quality targets such that, also in a future that is different from what we expected, the improvement is achieved in a cost-effective way?
- Flexibility
  - between pollutants
  - between countries
- How?
  - country and pollutant specific exchange factors
  - contribution per unit of emission to total human health impact and ecosystem effects in Europe



# Methodology

- source-receptor matrices EMEP
- Health impacts
  - contribution to PM2.5 and  $O_3$  (somo35)
  - added up using relative contribution (0.6 vs. 0.03)
  - population weighted sum
- Ecosystem effects
  - acidification and eutrophication
  - added up according to rate sensitive areas



#### Exchange factors for impact on human health

|                                                                  | SO <sub>2</sub> | NO <sub>x</sub> | PM2.5 | $NH_3$ |
|------------------------------------------------------------------|-----------------|-----------------|-------|--------|
| Germany                                                          | 1.00            | 0.50            | 3.29  | 1.18   |
| France                                                           | 0.75            | 0.43            | 2.33  | 0.59   |
| Benelux                                                          | 0.90            | 0.26            | 4.25  | 1.46   |
| UK & Ireland                                                     | 0.52            | 0.15            | 1.87  | 0.63   |
| Mediterranean countries                                          | 0.42            | 0.36            | 1.77  | 0.80   |
| Spain & Portugal                                                 | 0.45            | 0.15            | 1.28  | 0.31   |
| Scandinavia & Baltic States                                      | 0.21            | 0.12            | 0.58  | 0.30   |
| Poland                                                           | 0.57            | 0.21            | 1.73  | 0.85   |
| Bulgaria & Romania                                               | 0.39            | 0.33            | 1.06  | 0.57   |
| Austria, Czech Rep., Hungary,<br>Slovakia, Slovenia, Switzerland | 0.78            | 0.50            | 2.03  | 1.19   |
| Norway & Iceland                                                 | 0.14            | 0.12            | 0.39  | 0.11   |



#### Exchange factors for ecosystem effects

|                                                                  | SO <sub>2</sub> | NO <sub>x</sub> | $NH_3$ |
|------------------------------------------------------------------|-----------------|-----------------|--------|
| Germany                                                          | 0.48            | 1.00            | 3.01   |
| France                                                           | 0.26            | 0.93            | 2.74   |
| Benelux                                                          | 0.59            | 0.99            | 3.30   |
| UK & Ireland                                                     | 0.41            | 0.83            | 2.15   |
| Mediterranean countries                                          | 0.06            | 0.77            | 2.01   |
| Spain & Portugal                                                 | 0.10            | 0.80            | 2.13   |
| Scandinavia & Baltic States                                      | 0.20            | 0.63            | 2.05   |
| Poland                                                           | 0.52            | 0.99            | 3.17   |
| Bulgaria & Romania                                               | 0.08            | 0.77            | 2.08   |
| Austria, Czech Rep., Hungary,<br>Slovakia, Slovenia, Switzerland | 0.29            | 0.94            | 2.55   |
| Norway & Iceland                                                 | 0.24            | 0.51            | 0.77   |



## Quantitative analysis

- WorldScan computable general equilibrium model
  - macro-economic impact of policies
    - > demand shifts
    - > changing production structure
    - location of economic activities
- Implementation
  - 23 regions (15 within Europe)
  - SO<sub>2</sub>, NO<sub>x</sub>, NH<sub>3</sub>, PM2.5, GHGs
  - Climate and air policies cost-effective combination of:
    - > fuel switch, energy saving, changes in demand
    - > end-of-pipe abatement
  - emissions and emission control based on GAINS



### Simulations

- PRIMES baseline 2009
- Air policy targets: emission levels from GAINS optimisation 75% health improvement Europe-wide (CIAM report August 2010)
- flexibility with different weights for health and ecosystem effects
- Climate policy:
  - pessimistic: EU -20%, no climate policy USA, Japan;
  - optimistic ETS trade: EU -30% (-16% domestic), ETS trade with other Annex1 regions



### Results – pessimistic

|       | Cost end-of-<br>pipe (bln €/yr) |      | Emis. price<br>(€/kg) |      | Emissions<br>(1000 kton) |      |
|-------|---------------------------------|------|-----------------------|------|--------------------------|------|
|       | no flex                         | flex | no flex               | flex | no flex                  | flex |
| SO2   | 0.9                             | 0.5  | 4.8                   | 2.7  | 2.0                      | 2.1  |
| NOx   | 0.4                             | 0.3  | 2.9                   | 1.9  | 5.2                      | 5.2  |
| NH3   | 0.9                             | 0.5  | 9.1                   | 5.5  | 3.2                      | 3.2  |
| PM2.5 | 0.6                             | 0.4  | 8.5                   | 5.6  | 0.9                      | 0.9  |



### Results – optimistic ETS trade

|       | Cost end-of-<br>pipe (bln €/yr) |      | Emis. price<br>(€/kg) |      | Emissions<br>(1000 kton) |      |
|-------|---------------------------------|------|-----------------------|------|--------------------------|------|
|       | no flex                         | flex | no flex               | flex | no flex                  | flex |
| SO2   | 1.3                             | 0.6  | 7.1                   | 3.0  | 2.0                      | 2.2  |
| NOx   | 0.3                             | 0.2  | 2.1                   | 1.2  | 5.2                      | 5.3  |
| NH3   | 0.4                             | 0.2  | 6.2                   | 3.5  | 3.1                      | 3.1  |
| PM2.5 | 0.6                             | 0.6  | 8.3                   | 7.1  | 0.9                      | 0.9  |



## Differences at country level

|                        | End-of-pipe cost<br>(mIn €/yr) |      |            |      | Emissions<br>(kton) |      |            |      |
|------------------------|--------------------------------|------|------------|------|---------------------|------|------------|------|
|                        | SO2                            |      | NH3        |      | SO2                 |      | NH3        |      |
|                        | no<br>flex                     | flex | no<br>flex | flex | no<br>flex          | flex | no<br>flex | flex |
| Germany                | 21                             | 13   | 82         | 0    | 306                 | 306  | 456        | 489  |
| France                 | 97                             | 20   | 230        | 0    | 150                 | 164  | 494        | 566  |
| Mediterr.<br>countries | 138                            | 21   | 279        | 80   | 268                 | 314  | 350        | 393  |



## Discussion

- Weights health impact vs. ecosystem effects
- Impact of flexibility on air quality and ecosystems locally
- Introduce penalty to use efficiency gains to achieve larger quality improvement
- Not (yet) included/further work:
  - impact O<sub>3</sub> on vegetation
  - emissions from shipping
  - concentration variation within countries
  - demographic differences within Europe



## Conclusions

Flexibility worth consideration

- efficiency gains
- better prepared for deviations from baseline assumptions (i.e.: economic growth, EOP costs, other environmental/CC policies)

but

. . .

- Iocal effects/'border-effects'
- weighing different impacts (ecosystem versus health)
- Implementation (complexity, transaction costs)