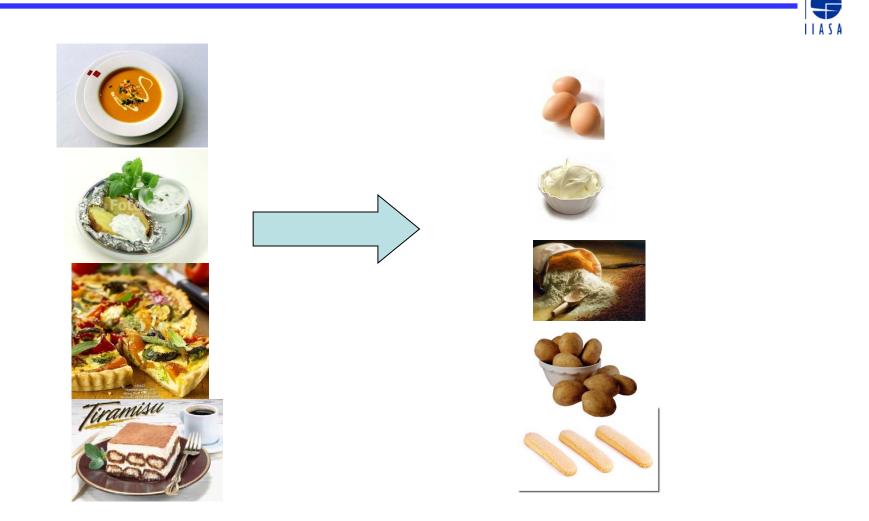
Fabian Wagner International Institute for Applied Systems Analysis (IIASA)

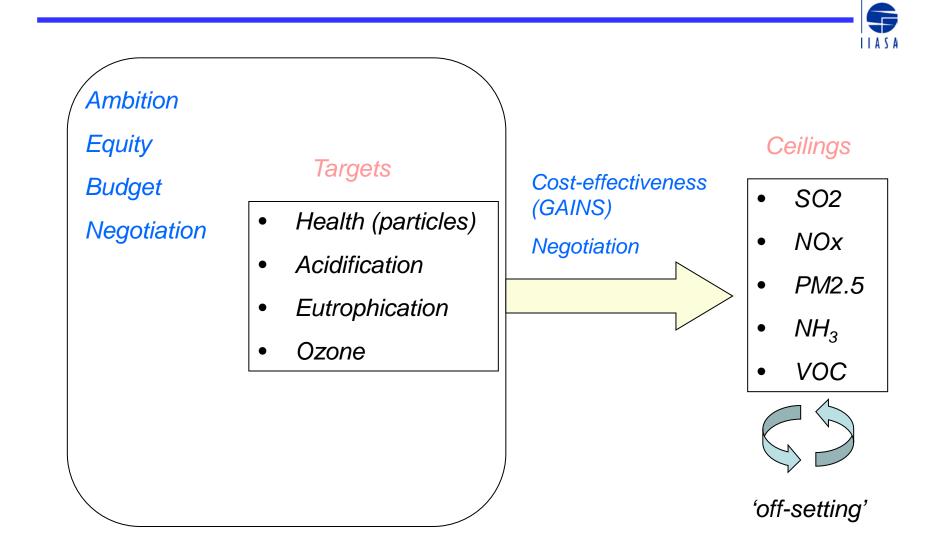
Flexible emission ceilings and emission off-setting: Principles, results and challenges

TFIAM, 39th Session 23-25 February 2011, Stockholm

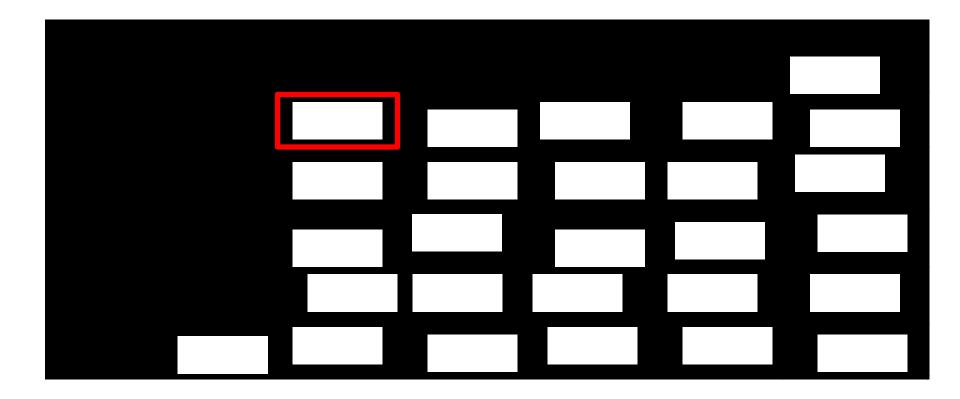
Outline


- Motivation and terminology
- Off-setting 1 ceiling exceedance with 1 other pollutant
- Exchange rates and the challenge to define them ex-ante
- Conclusions

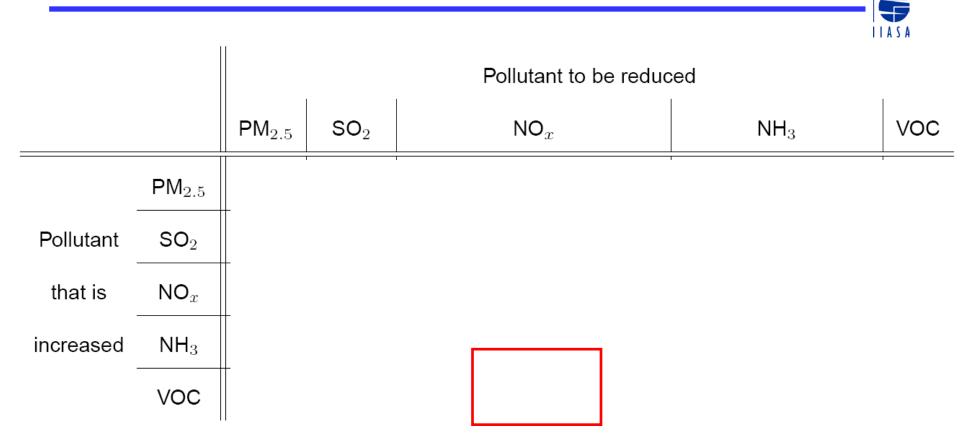
Motivation



- Future is unknown
 - but policy makers decide now on emission ceilings
- After a set of emission ceilings have been agreed upon
 - we may gain new knowledge; role of national modelers
 - reality may/will deviate from the scenario;
 - > the emissions ceilings may no longer be cost-effective
 - > need for **flexibility** in achieving the ceilings while ensuring **environmental integrity**.
- Could a **limited offsetting** of pollutants **within a country** improve cost-effectiveness and avoid **regret investments**?
- Under what conditions can environmental integrity be ensured?


Culinary analogy: menus, dishes, ingredients

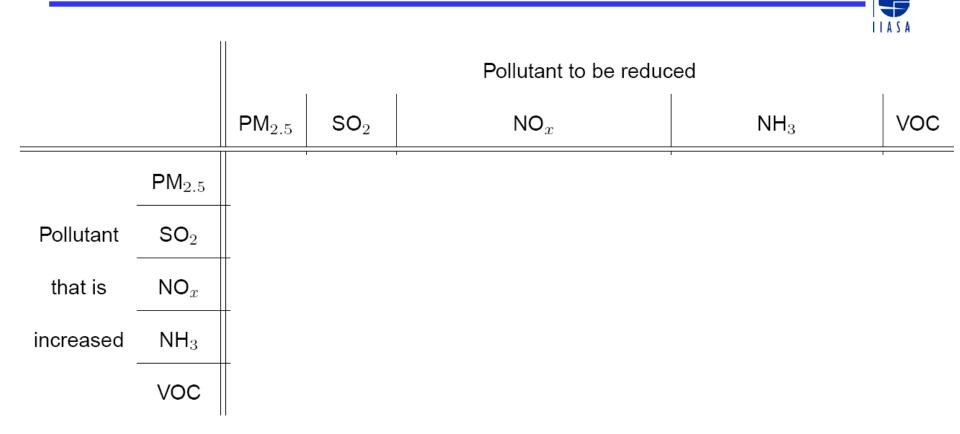
A role for off-setting?



Overview of off-setting regimes Number of possible combinations

IIASA

1 exceedance offset by further reduction of 1 pollutant


Rules for offsetting exceedance in VOC by NOx

	SO2	NOX	PM2.5	NНЗ	VOC
Health (Particles)	Х	Х	X	Х	
Acidification	Х	X		Х	
Eutrophication		Х		Х	
Ozone		Х			Х

 $T^{n,o} \cdot \Delta NOX + T^{v,o} \cdot \Delta VOC = 0$

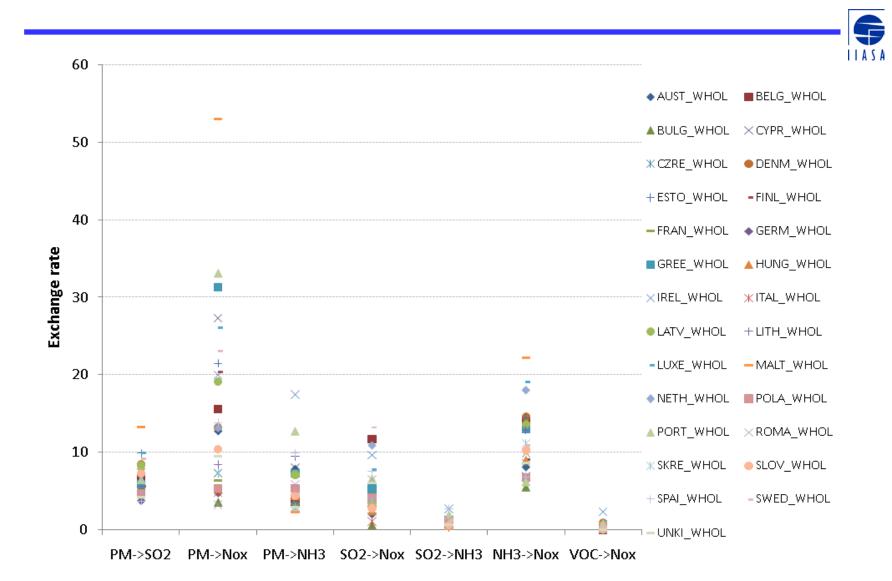
 $\Delta NOX = -(T^{v,o} / T^{n,o}) \cdot \Delta VOC$

1 exceedance offset by further reduction of 1 pollutant Exchange rates depend only on source-receptor matrices

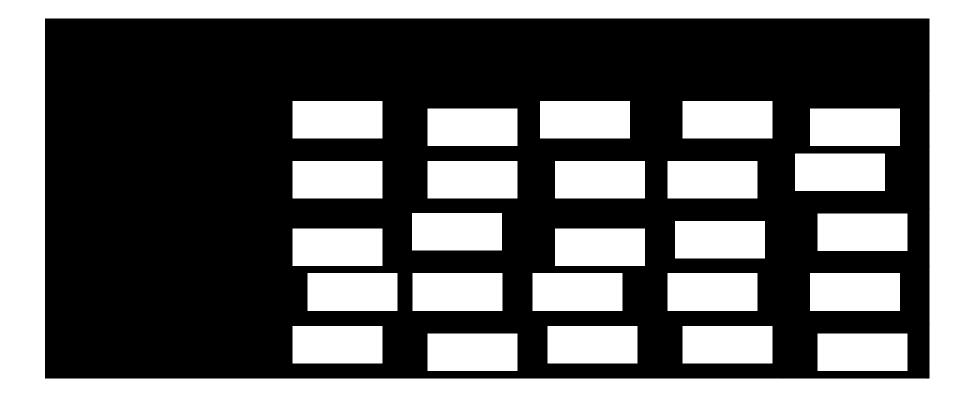
1 exceedance offset by further reduction of 1 pollutant Exchange rates depend only on source-receptor matrices

		Pollutant to be reduced					
		$PM_{2.5}$	SO_2	NO_x	NH_3	VOC	
	$PM_{2.5}$	Ø	$\geq \frac{T^{p,y}}{T^{s,y}}$	$\geq \frac{T^{p,y}}{T^{n,y}}$	$\geq \frac{T^{p,y}}{T^{a,y}}$	Ø	
Pollutant	SO_2	Ø	Ø	$\geq \max\left(rac{T^{s,ac}}{T^{n,ac}},rac{T^{s,y}}{T^{n,y}} ight)$	$\geq \max\left(rac{T^{s,ac}}{T^{a,ac}},rac{T^{s,y}}{T^{a,y}} ight)$	Ø	
that is	NO_x	Ø	Ø	Ø	Ø	Ø	
increased	NH_3	Ø	Ø	$\geq \max\left(rac{T^{a,ac}}{T^{n,ac}},rac{T^{a,eu}}{T^{n,eu}},rac{T^{a,y}}{T^{n,y}} ight)$	Ø	Ø	
	VOC	Ø	Ø	$\geq \frac{T^{v,o}}{T^{n,o}}$	Ø	Ø	

Exchange rates for 2-pollutant trade (7 feasible cases) Example: UK



		Pollutant to be reduced					
		PM2.5	SO2	NOX	NH3	VOC	
	PM2.5		4.3	9.5	2.9		
Pollutant	SO2			6.0	0.7		
to	NOX						
increase	NH3			8.6			
	VOC			inf			

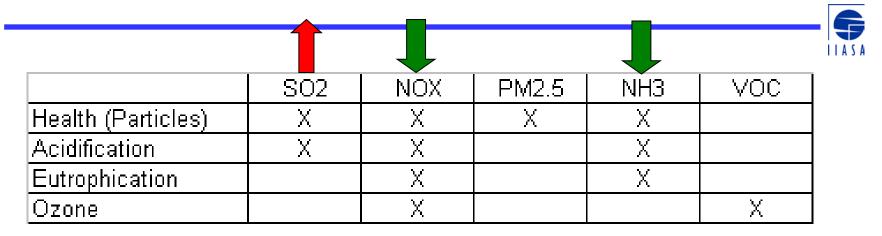

D-11---- to to the day and

Exchange rates are country-specific

Exchange rates for the feasible 2-pollutant cases Comparison between trading cases and across countries

Overview of off-setting regimes Number of possible combinations

IIASA


Challenges for exchange rates for ALL off-setting options

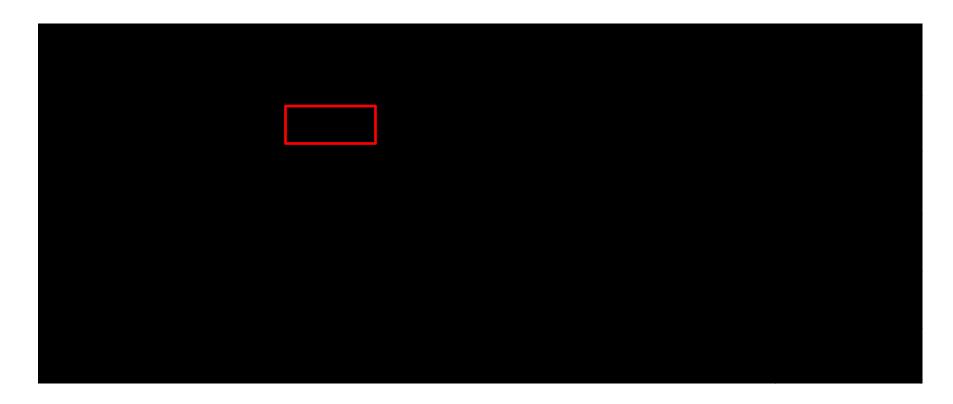
- Exchange rates should be
 - efficient (no unnecessary emission reductions)
 - applicable in all circumstances ('universal')

• But such exchange rates do not exist

- Could define rules for off-settings, different for each combination of rules
 - Codification of rules would be intransparent

Exchange rates **cannot** be universal **and** efficient An Example

Example **Part 1**(SO2 -> NOx):


• Use SO2-NOx exchange rate to calculate NOx reduction

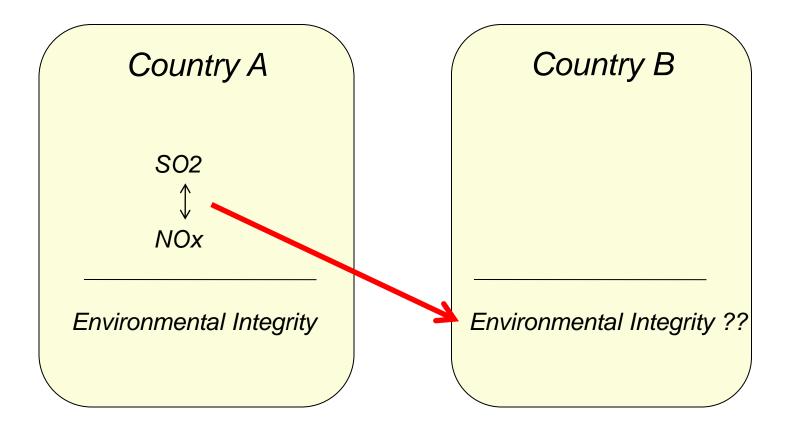
Example Part 2(SO2 -> (NOx,NH3):

- NH3 is compensating parts of SO2
- Need to reduce less NOx than without NH3 reduction (Part 1)
- The simple SO2-NOx exchange rate overestimates need for NOx reduction

Restriction to the 1:1 cases? Limited flexibility, but simple rules

Summary and Conclusions

- Offsetting within a country
 - increases flexibility in meeting national ceilings
 - Allows stakeholders to react on new information (post signature)
 - can avoid regret investments
- Environmental integrity can always be checked
 - Downwind effects can also be considered
 - Offsetting more certain with less certain emissions?
- But there are no exchange rates that are efficient AND universal
 - -> difficult to put rules into a protocol
- Compromise? Restriction to (1:1) offset regime (1 exceedance, 1 offset)
 - Requires 7 values for exchange rates per country
 - Values could be part of a revised protocol?


The efficient set of exchange rates for Part 2

$$R_{\text{NO}_x,\text{SO}_2} = \frac{\left(\frac{T^{s,ac}}{T^{a,ac}} - \frac{T^{s,y}}{T^{a,y}}\right)}{\left(\frac{T^{n,ac}}{T^{a,ac}} - \frac{T^{n,y}}{T^{a,y}}\right)}$$
$$R_{\text{NH}_3,\text{SO}_2} = \frac{\left(\frac{T^{s,ac}}{T^{n,ac}} - \frac{T^{s,y}}{T^{n,y}}\right)}{\left(\frac{T^{s,ac}}{T^{n,ac}} - \frac{T^{s,y}}{T^{n,y}}\right)}$$

Downwind effects

• Potential Problem:

IIASI

Downwind effects Conditions for avoiding adverse effects

		Pollutant to be reduced						
		$PM_{2.5}$	SO_2	NO_x	NH_3	VOC		
	$PM_{2.5}$	Ø	$\geq \max_{B}^{T^{p,y}}$	$\geq \max_{B}^{T^{p,y}} \overline{T^{n,y}}$	$\geq \max_{B}^{T^{p,y}} \overline{T^{a,y}}$	Ø		
Pollutant	SO_2	Ø	Ø	$\geq \max_{B} \max\left(rac{T^{s,ac}}{T^{n,ac}},rac{T^{s,y}}{T^{n,y}} ight)$	$\geq \max_{B} \max\left(rac{T^{s,ac}}{T^{a,ac}},rac{T^{s,y}}{T^{a,y}} ight)$	Ø		
that is	NO_x	Ø	Ø	Ø	Ø	Ø		
increased	NH_3	Ø	Ø	$\geq \max_{B} \max\left(rac{T^{a,ac}}{T^{n,ac}},rac{T^{a,eu}}{T^{n,eu}},rac{T^{a,y}}{T^{n,y}} ight)$	Ø	Ø		
	VOC	Ø	Ø	$\geq \max_{B} rac{T^{v,o}}{T^{n,o}}$	Ø	Ø		

Choosing exchange rates sufficiently high will ensure environmental integrity also in down-wind countries