

CPB Netherlands Bureau for Economic Policy Analysis

Integrated Assessment: Air & Climate Policies are Complements

by

Johannes Bollen Corjan Brink Herman Vollebergh

Research Global / Regional Interactions Climate and Air Pollution Policies

- climate change and health impacts of energy related PM_{2.5}
- Bollen, J, van der Zwaan, B, Brink, C, and Eerens, H. (2009), Local Air Pollution and Global Climate Change: A Combined Cost-Benefit Analysis, Resource and Energy Economics, Vol. 31, Issue 3, August 2009, pp. 161-181.

• + energy security

- Bollen J., van der Zwaan, B., Hers, S. (2010), An Integrated Assessment of Climate Change, Air Pollution, and Energy Security Policy, Energy Policy, Vol. 38, Issue 8, pp. 4021-4030.
- + Emissions of PM_{10} , SO_2 , NO_x , NH_3 , VOC
 - + Concentrations of $PM_{2.5}$ (+ secondary aerosols), strat. O_3 ,
 - + Decomposing GHG climate sensitivity in trop. O₃ & GHG's
- Bollen, J., Guay, B., Jamet, S., Corfee-Morlot, J. (2009), Co-benefits of Climate Change Mitigation Policies: Literature Review and New Results, OECD Economics Department Working Paper No. 693, OECD Economics Department Working Paper No. 693, OECD.

75% of ΔT of Climate Policies through Air Policies

Policy Relevance

- Less free-rider incentives
- Restructure Non-Electric Energy
- Focus R&D also on Non-Electric Energy

Valuing Air Pollution (no Spikes)

Various contributions to the outdoor concentration of PM_{2.5}

- weighted sum SO_x, NO_x, NH₃, PM_{2.5} (de Leeuw, 2002)
- concentrations → premature deaths (Pope et al, 2002)
- 1 mn €/premature death in EU, income elasticity 1 (Viscusi&Aldy, 2003)

Main characteristics MERGE

- Intertemporal Optimization Welfare
- 9 regions, Pareto-efficiency
- top-down production, bottom-up energy perspective
- Fossil Fuel depletion
- RD and two-factor learning
- end-of-pipe mitigation options included

Technology Costs & Emissions Coefficients in Europe

Electricity Sector						
		Cost		Emission coefficients		
Date of availability	Technology	Cost in 2000 \$/GJ	CO ₂ t/GJ	SO ₂ t/GJ	No _x t/GJ	PM _{2.5} t/GJ
Available	Coal direct use	2.5	0.024	0.34	0.22	0.12
Available	Oil at alternative costs	3.0-5.3	0.02	0.15	0.035	0.017
Available	Coal at alternative costs	2.0-4.3	0.014	0	0.35	0
Available	Renewable	6	0	0	0	0.011
2010	Carbon free technology	14↓6	0	0	0	0
Non-Electricity Sector						
Date of availability	Technology	Cost in 2000 Mills/kWh	CO ₂ Bn t/TWH	SO ₂ Mt/TWh	Nox Mt∕TWh	PM Mt/TWh
Available	Hydroelectric and geothermal	40	0	0	0	0
Available	Existing nuclear	50	0	0	0	0
Available	Existing gas fired	36	0.14	0	0.26	0
Available	Existing oil fired	38	0.21	1.87	0.40	0.01
Available	Existing coal-fired	20	0.25	0.99	0.42	0.01
2010	New gas-fired	13	0.09	0	0.23	0
2020	Advanced gas-fired +CCS	30	0	0	0	0
2010	New coal-fired	41	0.2	0	0.35!!!	0
2050	Advanced coal-fired +CCS	56	0.01	0.029	0.01	0
2030	Integr. gas.+ comb.cycle+CCS	62	0.02	0.04	0.23	0
2010	Carbon free technology	100↓5	0	0	0	0

CPB Netherlands Bureau for Economic Policy Analysis

Abatement Cost Curves: OECD Europe

Valuation of air pollution (1 of 4)

$$PM_{t,r} = PM\left(G_{t,r}, Y_{t,r}\right) = \frac{0.06G_{t,r}}{0.06G_{t,r} + 1} P_{t,r} c_{t,r} \left(1.06\frac{\left(Y/P\right)_{t,r}}{\left(Y/P\right)_{0,W}}\right)$$

with G is the anthropogenic $PM_{2.5}$ concentration, P the region's population of the region, and c the crude death rate, and Y the BBP. The risk of death thus increases log-linearly with the concentration of $PM_{2.5}$ The crude death rate is assumed to increase by 12% on average and by 8% in OECD regions in 2050 relative to 2000.

8

Valuation of air pollution (2 of 4)

$$PM_{t,r} = PM\left(G_{t,r}, Y_{t,r}\right) = \frac{0.06G_{t,r}}{0.06G_{t,r} + 1}P_{t,r}c_{t,r}\left(1.06\frac{\left(Y/P\right)_{t,r}}{\left(Y/P\right)_{0,W}}\right)$$

$$G_{t,r} = \sum_{c \in C} H_{c,t,r} + \min\left(H_{NH_3,t,r}, \frac{18}{72}H_{NO_x,t,r} + \frac{36}{96}H_{SO_x,t,r}\right)$$

With c the index of substances SO_2 , NO_x , and PM_{10} and H the substance-specific contribution to the regional yearly $PM_{2.5}$ concentration. The last term accounts for the fact that the secondary aerosol formation from ammonia can only contribute $PM_{2.5}$ concentration though chemical reactions with NO_3^- or SO_4^{2-} . The weights express the sum of the atomic weights of the different elements contributing to NO_3^- or SO_4^{2-} . In the presence of ammonia, secondary aerosols often take the form of ammonium salts; i.e. ammonium sulfate and ammonium nitrate (both can be dry or in aqueous solution); in the absence of ammonia, secondary compounds take an acidic form as sulfuric acid (liquid aerosol droplets) and nitric acid (atmospheric gas).

Valuation of air pollution (3 of 4)

With *u* the exogenous time series of the proportion of people living in urban areas in year t in region *r*, $\Delta E_{s,t,r}$ the growth of emissions of substance *s* at time *t* compared to the year 2000, and the substance-specific coefficient α in urban or rural areas to translate regional emission increases to the regional yearly average concentration of PM_{2.5}.

$$H_{s,t,r} = u_{t,r} \Big(C_{s,t,r,urb} + C_{s,t,r,rur} \Big) + \Big(1 - u_{t,r} \Big) \Big(C_{s,t,r,rur} \Big)$$

= $u_{t,r} C_{s,t,r,urb} + C_{s,t,r,rur}$
= $\Delta E_{s,t,r} \Big(u_{t,r} \alpha_{s,r,urb} + \alpha_{s,r,rur} \Big)$

Valuation of air pollution (4 of 4)

$$PM_{t,r} = PM\left(G_{t,r}, Y_{t,r}\right) = \frac{0.06G_{t,r}}{0.06G_{t,r} + 1}P_{t,r}c_{t,r}\left(1.06\frac{\left(Y/P\right)_{t,r}}{\left(Y/P\right)_{0,W}}\right)$$

$$G_{t,r} = \sum_{c \in C} H_{c,t,r} + \min\left(H_{NH_3,t,r}, \frac{18}{72}H_{NO_x,t,r} + \frac{36}{96}H_{SO_x,t,r}\right)$$

$$\begin{split} H_{s,t,r} &= u_{t,r} \Big(C_{s,t,r,urb} + C_{s,t,r,rur} \Big) + \Big(1 - u_{t,r} \Big) \Big(C_{s,t,r,rur} \Big) \\ &= u_{t,r} C_{s,t,r,urb} + C_{s,t,r,rur} \\ &= \Delta E_{s,t,r} \Big(u_{t,r} \alpha_{s,r,urb} + \alpha_{s,r,rur} \Big) \end{split}$$

MERGE: Climate Change

MERGE: CBA on Climate Change & Air Pollution

Policy Scenarios in Cost-Benefit Mode

- Policy variants optimally address externalities
 - Only Climate Change
 - Only Air Pollution
 - Both Climate Change and Air Pollution

Air Pollution 1st, Climate Change 2nd Issue Co-benefits significant for any mitigation strategy

"Only Air" strategy yields significant global CO2 eq emission reductions!

Strategies < EU-Roadmap, but "Only Air" also yields CO2 eq emission reductions

EOP options tackle only 33% and NO_x reductions 20-60% of Air pollution

Global Premature Deaths avoided from Only Air Pollution Policies decomposed to sources (% of population)

18

Stringent Air Pollution Policies \rightarrow large climate change benefits

% of Temperature Improvement of Air compared to Climate Policy for different Values of Statistical Life in the base-year in EU

19

Climate Co-Benefits \rightarrow 0, only if Secondary Aerosols to Air Pollution = 0!!

CPB Netherlands Bureau for Economic Policy Analysis

2020-2040: Learning Non-Electric markets, later in Electric markets (spillovers)

More Changes in Energy Markets & Learning in Electric in Climate Case

Air Policies are the primal, and generate large co-benefits to climate change, and involve

- EOP tackling 33% (potential is larger) & NOx reductions account 20-60% of the air pollution problem
- Δ Temperature = 40-100% of Climate Policy
- Climate Co-Benefit → 0, only if Secondary Aerosols to Air Pollution = 0!! no Nox contribution to air pollution
- Start learning Non-Electric markets, later in Electric markets