PLACING A VALUE ON OZONE EFFECTS ON ECOSYSTEM SERVICES: A CASE STUDY FOR THE UK

Gina Mills, Laurence Jones, Felicity Hayes, Alice Milne*

* With contributions from the Defra Ozone Umbrella Centre for Ecology & Hydrology consortium, ICP Vegetation and EMEP participants

Ecosystem services valued

Funded by Defra*, we have **spatially analysed the marginal costs for the UK** of effects of ozone on:

- Carbon sequestration by grasslands (regulating service)
- Lamb production via effects on pasture quality (provisioning service)
- Wheat production (provisioning service)

Although not yet taken through to valuation, we have also investigated effects on biodiversity

* Thank you!

Marginal costs: valuation method

Marginal costs approach, used for comparison of damage costs across impacts

For each increasing year, for each 10 x 10 km square, calculate

Value per year = Change in yield in each year compared with reference year x price of wheat (€126/tonne) x discount factor

Equivalent Annual Net Value = sum of values for each year /annuity value

Damage cost = Equivalent annual net value/average change in O3 conc./flux over time

24h mean O_3 conc., 2007 to 2020

2007 (mean 30.9 ppb) 2020* (mean 33.8 ppb) Difference (2020 – 2007)

*OSRM model, based on 2007 met data, DECC UEP43 CCC energy projection and NAEI2008 emission spatial distribution maps, 7 month growing season

Impact pathway for pasture quality

In 2012 there were 32million sheep and lambs in the UK, of total value £1.1 billion (€ 1.3billion)

Pasture quality vs supplementary feed

Highest

quality

pasture

Increasing ozone pollution reduces the energy available from pasture, reducing lamb growth unless supplementary feed is provided

* Relationships varies by lamb size

quality

pasture

Ozone impacts on lamb liveweight gain

From 2007 to 2020

- In the UK the effects are largest where the ozone increase is moderate but there are many lambs
- Total liveweight gain of lambs per day is predicted to be
 decreased by 4% in 2020 compared to 2007

Change in concentrate required to reach target sale weight of lambs

Marginal costs of ozone impacts on lamb production

Based on change in concentrate needed to get lambs to target weight	From 2007 to 2020	Range (95% CI)
Total Value accumulated		
(2007 to 2020)	-€295k	-€1.9k to -€571k
Equivalent Annual Net		
Value (£)	-€227k	-€91k to -€367k
The damage cost per unit		
increase in growing season		
24 hr mean ozone (ppb)	-€147k	-€57k to -€229k

* Includes separate calculations for upland and lowland lambs

Quantified sources of uncertainty: spatially variable ozone concentration, regression equation, predicting liveweight gain per lamb from pasture quality, distribution of lambs

Impact pathway: Carbon sequestration

Marginal costs of ozone impacts on grassland C allocation

oil C	From 2007 to 2020	Range (95% CI)
Total change in C sequestered (tons)	-619,000	
Total accumulated value of marginal		-€76 million to
costs (2007 – 2020)	-€111 million	-€155million
Equivalant Annual Nat Valua		-€7.3 million to
	-€10.9 million	-€15million
The damage cost per unit increase in		
growing season 24 hr mean ozone		-€4.6 million to
(ppb)	-€6.7million	-€9.3million

Quantified uncertainty: Spatial variability of ozone; Primary Productivity data; response function slope and intercept; NPP allocated to soil C; % grassland in 1 km square

Impact pathway for wheat production

Ozone flux (POD₆) in 2007 and 2020

(mean of 2006, 07 and 08)

Spatial pattern of ozone flux (POD₆ wheat, mmol m⁻²) in wheat growing areas

Change in wheat production, 2007 to 2020

Difference in ozone

(POD₆, mmol m⁻² 2020 – 2007) Wheat production (mean of 2006 and 2008)

Change in wheat production 2007 to 2020 (t per 10 x 10km square)

Marginal costs of effects of O₃ on wheat

	2007 to 2020	Range (95% Confidence interval)
Total Value of marginal		-€187 million to
costs (2007 to 2020)	-€226 million	- €268 million
Equivalent Annual Net		-€18.2 million to
value	-€21.9 million	-€26.0 million
The damage cost per unit		
increase in growing		-€98.4 million to
season POD6	-€118.7million	-€144.4 million

Marginal costs

Magnitude of effects

* Used to quantify economic effects of ozone for the revised Gothenburg Protocol scenarios

European crop loss calculations: GP scenarios

GP2005

GP CLE 2020

GP CLE2030

Percentage yield loss – calculated using a new response relationship for the generic crop flux model $(POD_3IAM)^1$

¹ assumes soil water is not limiting

Wheat yield loss – Revised GP scenarios

Mean % yield loss* for EU27: 12.4% for GP2005 10.3% for GP CLE2020

* assumes soil water is not limiting

32nd WGE, 12 -13 Sept. 2013, Geneva

ICP Vegetation State of Knowledge Report

http:/icpvegetation.ceh.ac.uk

Ozone Pollution: Impacts on Ecosystem Services and Biodiversity

- 1. Introduction
- 2. Ecological processes and supporting services
- 3. Provisioning services
- 4. Regulating Services
- 5. Cultural services
- 6. Placing an economic value on effects
- 7. Conclusions and recommendations
- 8. Annex 1 : Contributions from participants
- 9. Annex 2: O₃ and stomatal conductance

Conclusions

> Marginal costs quantified for UK for O_3 effects on three ecosystem services, for the period 2007 to 2020; allows comparison with other air quality impacts e.g. health

➤ Equivalent Annual Net Value was largest for wheat yield (€21.9 million), less for C sequestration (£10.9 million) and quite small for lamb production (€0.23 million).

➤ We quantified uncertainty associated with these figures, providing 95% confidence intervals for effects on each service

➢ At the European scale, the magnitude of effects of ozone in a given "year" were calculated relative to zero ozone flux (approx pre-industrial ozone), with mean yield losses calculated for EU27+CH+NO was 12.4% for GP2005 and 10.3% for GPCLE2020

Thank you to Defra, LRTAP Convention and NERC for funding this work

SPARES

Quantification of uncertainty

Quantification of the range of values for each stage in analysis

- Statement of what the range represents
- Distribution of values within the range. The following were considered:
 - Uniform, where all values within the range are equally likely.
 - Triangular, where values towards the centre are more likely than those closer to the extremes.
 - Normal, similar to triangular in effect, but used where it is possible to base the range on statistical evidence.
- > Whether uncertainties in parameters are independent of each other.

Monte Carlo simulation to propagate the uncertainty in the parameters and variables through the model, thereby calculating the uncertainty in the estimated impacts of ozone.

Using @Risk software, running simulation for 10000 iterations

