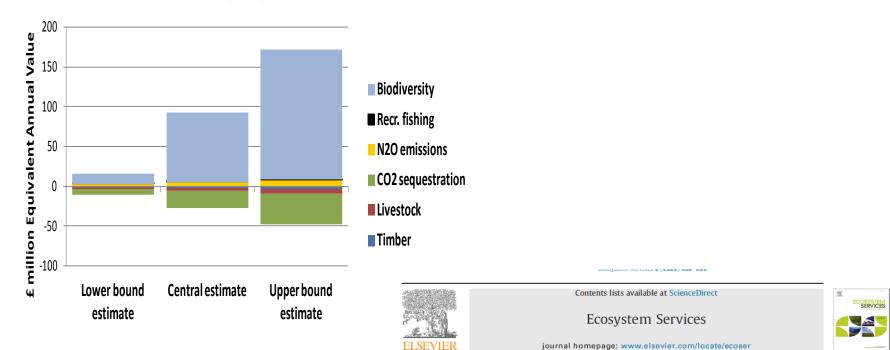
Valuing atmospheric nitrogen impacts on 'appreciation of biodiversity' –

Applying the ecosystem services approach in the UK

Laurence Jones, Gina Mills, Alice Milne, Allan Provins, Mike Holland, et al.*

* With contributions from eftec, EMRC, Rothamsted Research, UK Defra & others



Background – Building on previous work...

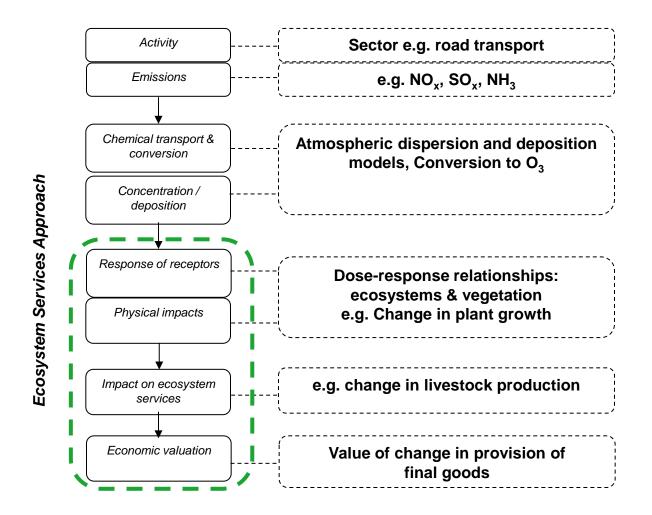
Three contracts for UK Department of the Environment, Food and Rural Affairs (Defra):

> Applying the Ecosystem Services Approach to value air pollution impacts on ecosystem services. *NEE0117 (2010).* **Proof of concept**.

	Provisioning Services Timber		Regulating Services				Cultural Services	
			Net GHG emissions				Recreational	Appreciation of
	production	Livestock	CO ₂	N ₂ O	CH_4	Clean water	fishing	biodiversity
								Woodland,
		Improved						Heathland,
		grassland:	Woodland,	All semi-natural			Upland rivers:	Grasslands and
Nitrogen	Woodland	Partially valued	Heathlands	habitats	n.v.	n.v.	Partially valued	Bogs.
Sulphur	n.v.	n.v.	n.v.	n.v.	Bogs	n.v.	n.v.	n.v.
			Woodland,					
Ozone	Woodland	n.v.	Grasslands	n.v.	n.v.	n.v.	n.v.	n.v.

Benefits/costs from declining nitrogen deposition, 1987-2007

Jones et al. (2013). Ecosystem Services (online)


A review and application of the evidence for nitrogen impacts on ecosystem services

L. Jones^{a,*}, A. Provins^b, M. Holland^c, G. Mills^a, F. Hayes^a, B. Emmett^a, J. Hall^a, L. Sheppard^d, R. Smith^d, M. Sutton^d, K. Hicks^e, M. Ashmore^e, R. Haines-Young^f, L. Harper-Simmonds^b

Background – Building on previous work...

- Valuing ozone impacts on ecosystem services. AQ0815 (2011). Spatial calculations of impact, uncertainty.
- Developing valuation and knowledge gaps assessment. AQ0827 (2012). Further methodological development.
- Calculation of damage costs for NHy and NOx for selected ecosystem services.

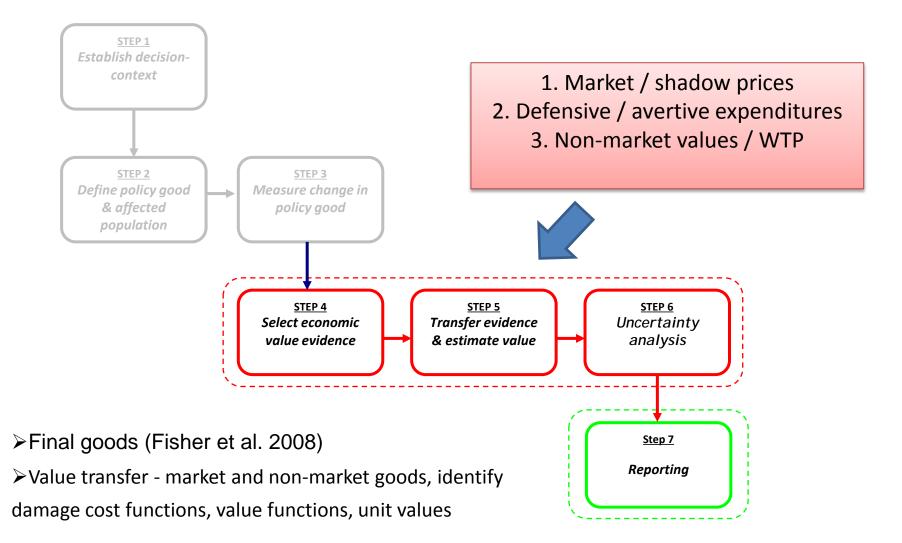
#1: The Impact Pathway



#2: Conceptual Model

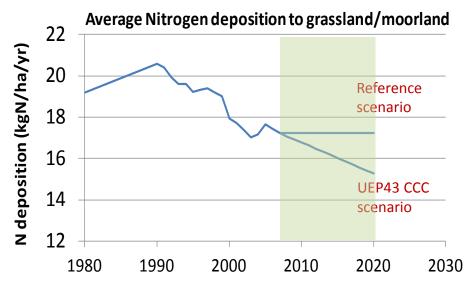
Nitrogen impacts on ecosystem services, via:

- Eutrophication
- Acidification
- Direct toxicity


Eutrophication

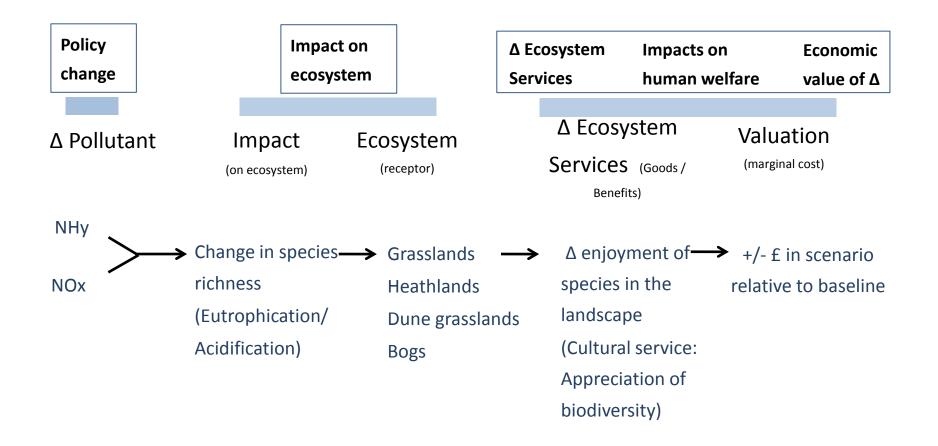
Jones et al. (2013). Ecosystem Services (online)

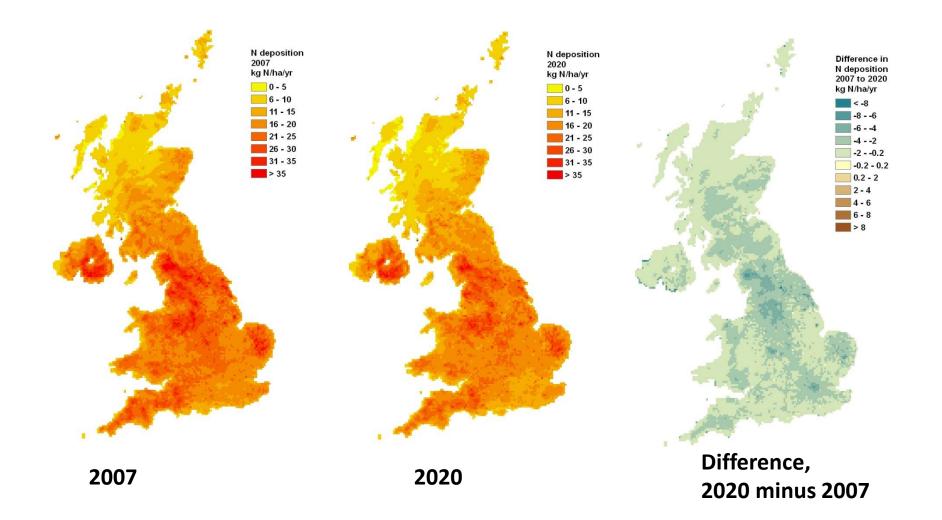
#3: Valuation


Valuation: Value transfer steps

#4: Marginal costs in scenario analysis

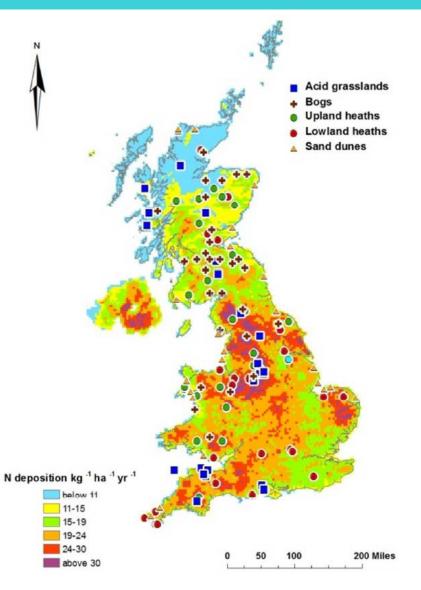
Marginal cost approach - Scenarios


- Comparison of impact under a specified emissions scenario (DECC UEP43 CCC energy projection), against continued impact at deposition levels in the reference year.
- Declines in N deposition 2007 2020, using 2007 as the reference year

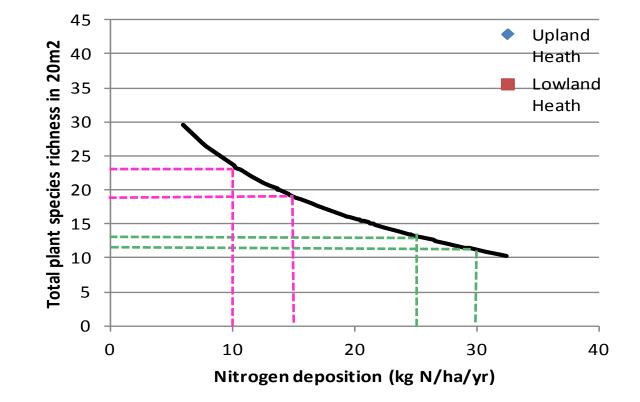

Aim

What is the financial impact of changing nitrogen deposition on the ecosystem service: "Appreciation of biodiversity" in the UK ?

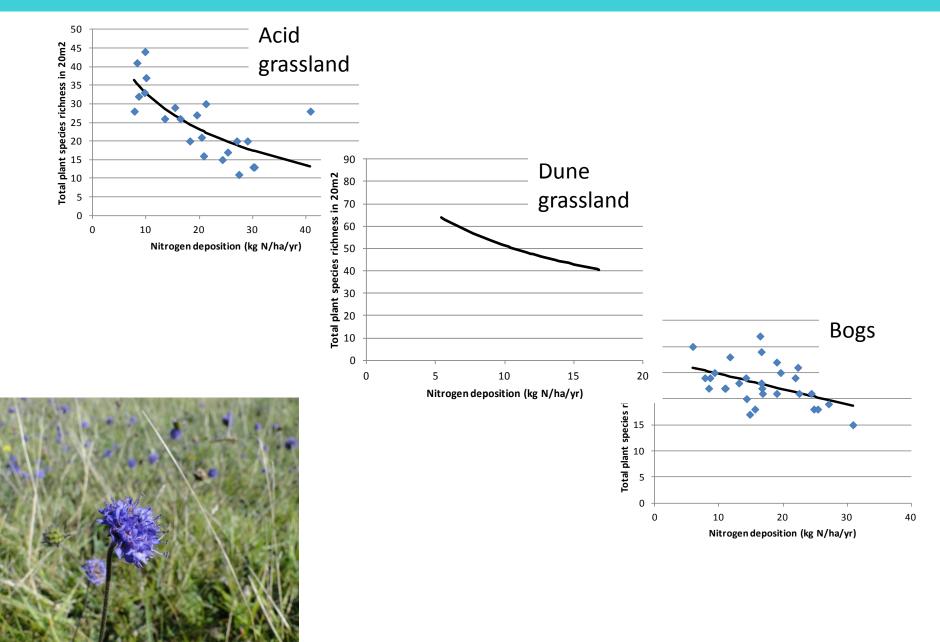
Impact pathway for: Nitrogen on 'Appreciation of Biodiversity'


N deposition change: Future scenario

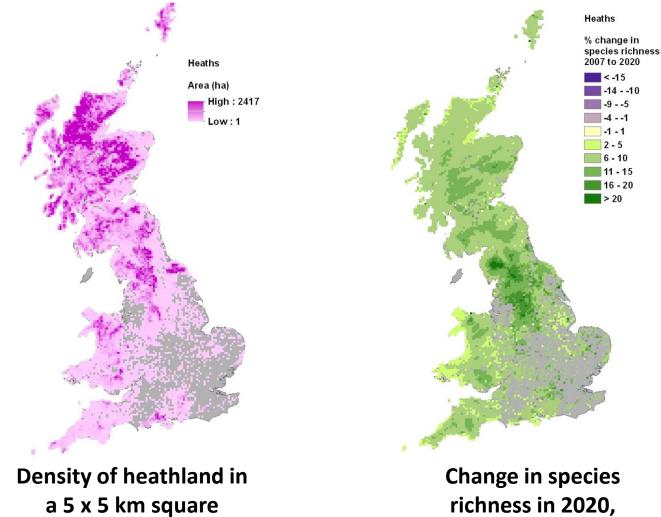
Dose-response relationships: #1


Nitrogen and plant species richness

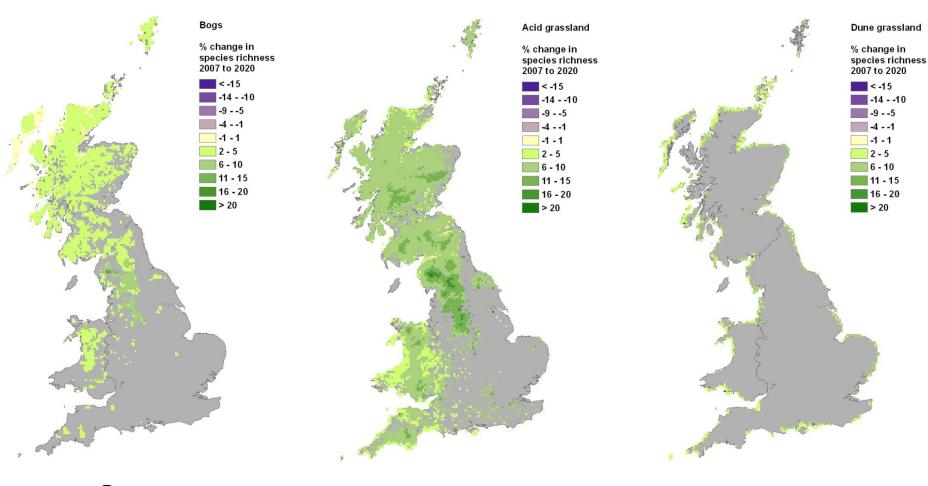
- Gradient survey approach
- Five habitats:
 - o Acid grassland
 - o Heaths (upland and lowland)
 - o Sand dune grassland
 - o Bogs
- Controlled for co-correlating gradients (e.g. temperature, rainfall)



#2: N & species richness - heathlands


• Heathlands

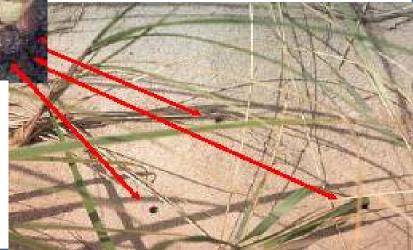
#3: acid grasslands, dune grassland, bogs



Changing plant diversity in heathlands

richness in 2020, compared with 2007

acid grasslands, dune grasslands, bogs

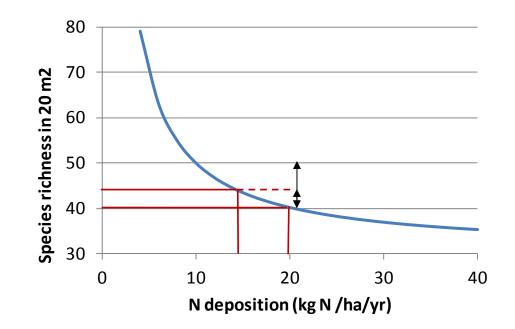

Bogs Change in species richness, 2020 - 2007

Acid grassland Change in species richness, 2020 - 2007

Dune grassland Change in species richness, 2020 - 2007

Petalwort, Petalophyllum ralfsii

Red-backed shrike, Lanius collu


Value transfer

- Choice experiment (Christie & Rayment, 2012).
- Valuing benefits of SSSI management.
- Stated preference techniques - WTP
- £/ha of habitat to achieve
 25% increase in populations of non-charismatic species

Benefit category	Increase SSSI funding	Maintain funding	Remove funding
Nature's gifts	MORE NATURE'S GIFTS You would see a 25% increase in the variety and extent of wild foods and other natural products available compared to present levels.	NO CHANGE You would see <i>no change</i> in the variety and extent of wild foods and other natural products available.	LESS NATURE'S GIFTS You would see a <i>50% reduction</i> in the variety and extent of wild foods and other natural products available compared to present levels.
Research and education	MORE RESEARCH AND EDUCATION The improved condition of the SSSI network would enable a 35% expansion of research and educational activities; improving society's understanding and appreciation of the natural environment compared to present levels.	NO CHANGE There would be <i>no change</i> in the SSSI resource for research and education purposes compared to present levels.	LESS RESEARCH AND EDUCATION The deterioration of the SSSI network would result in a 40% decline in research and educational activities; reducing society's understanding and appreciation of the natural environment compared to present levels.
Climate regulation	LESS CO ₂ There would be a small increase in the capacity of the SSSI network to store carbon; resulting in the storage of an extra 100k tomes of CO ₂ per annum (equivalent to 0.1% of all UK CO ₂ emissions). This would help to reduce global warming.	NO CHANGE There would be <i>no change</i> in the capacity of the SSSI network to store carbon from present levels.	There would be a small reduction in the expacity of the SSSI network to store carbon, resulting in the release of an extra 100k tonnes of C0; per annum (equivalent to 0.1% of all UK CO ₂ emissions). This would contribute to global warming.
Water regulation	LESS FLOODING There would be a small increase in the capacity of SSSI habitats to regulate water. 65,000 fever people would be at lower risk of flooding.	NO CHANGE There would be <i>no change</i> in the capacity of SSSI habitats to regulate water. 4.5 million people would remain at risk of flooding.	MORE FLOODING There would be a small reduction in the capacity of SSSI habitats to regulate water. 65,000 more people would be at a greater risk of flooding.
Sense of experience	MORE HABITATS MAINTAINED There would be a 33% increase in the area of SSSI habitats maintained in good condition. You might find that more of the countryside around you feels 'special'.	NO CHANGE There would be <i>no change</i> in the area of SSSI habitats maintained in condition.	FEWER HABITATS MAINTAINED There would be a 40% reduction in the area of SSSI hubitats maintained in good condition. You might notice that some of the natural areas that you visit feel less 'special' than they are now.
Charismatic species.	MORE CHARISMATIC SPECIES There would be a 20% increase in the populations and range of threatened mammals, birds, amphibans, reptiles, fish and butterflikes in SSSIs. Populations of these species would be stabilised. You will therefore be more likely to see these species in the countryside.	NO CHANGE NO CHANGE There would be <i>no change in the populations</i> <i>and range</i> of threatened mammals, birds, amphibians, reptiles, fish and butterflies in SSSIs. Many of these species would remain under threat.	FEWER CHARISMATIC SPECIES There would be a 55% decline in the populations and range of threatened mammals, birds, amphibians, reptiles, fish and butterflies in SSSIs. You will therefore be less likely to see these species in the countryside, Some of these species may disappear from some SSSIs altogether.

Valuation scaling & Uncertainty

- Proportion of WTP
- Calculated for habitat area within each 5 x 5 km sq
- Summed for UK for each habitat

Uncertainty

- Monte Carlo approaches
- Spatial and temporal autocorrelation
- Depends on accurate specification of uncertainty in input variables

Valuation results

 Using a revised spatial assessment of impact, there is an estimated benefit of roughly €30 million for future declines in N deposition (2007 to 2020) for 'Appreciation of Biodiversity' based on valuation for non-charismatic species

[Report nearing completion, estimated release date: March 2014]

- If response functions for charismatic species were available, these are likely to be a factor of 5 greater.
- Damage costs are being calculated, per unit NH3, NO2 emitted.

• Caveats:

- Doesn't account for other drivers of change in species richness
- Assumes instantaneous response of species change to N deposition
- Response functions for only 30% of UK semi-natural land area
- No dose-response functions yet for Charismatic species

Conclusions

High value for impacts on cultural services associated with biodiversity

- Quantification requires multi-disciplinary teams
- There remain knowledge gaps:

Dose-response functions for charismatic species

Dose-response functions for other cultural services

Damage costs for NHy and NOx are coming ...

