Catastrophe Bond Pricing based on Behaviors’ Model

Shuo Liu, Tatiana Ermolieva, Yuri Ermoliev, Liyan Han
What is Catastrophe bond

- Catastrophe bond (CAT Bond) is a corporate bond that requires investors to forgive some or all principal or interest in the event that catastrophe losses surpass the trigger specified in the bond.

- Issuer
 - SPV(Special Purpose Vehicle established by Insurer, Reinsurer)

- Bond holder
 - Fund, insurers, individual

- Aim
 - risk transfer:
What is CAT bond
Catastrophe Bond Pricing Problems

• Catastrophes are rare events
 – Impossible to predict potential losses
 – Catastrophic event have spatial and temporal characteristics
 – Historical losses cannot be used for prediction
 – Losses depend on land use decisions, economic growth

• Volume problem
 • How many bond need to be issued
Model Structure

Huge scale of issue volume and coupon rate combination → Constraints → Accepted combination of issue volume and coupon rate
Constraints

1. Issuer Survival factor: Insurer bankruptcy probability

 $P(R(\tau) < 0) < \alpha$

 Where

 ◦ $R(\tau)$ is the risk reserve when catastrophe occur

2. Existing factor: Bond exists constraints (individual serious loss probability)

 $P(IL(\tau) > \bar{L}) < \beta$

 Where

 ◦ $IL(\tau)$ is the losses that individual suffer when catastrophe occur
Some related equations

- Calculation of SPV’s payment to insurer once catastrophe occur at time \(t \)
 \[
 B(t) = n \cdot B_0 \cdot [a \cdot (1 + r_f)^{t-T} + b \cdot r_c \cdot \sum_{i=0}^{T-t} (1 + r_f)^{-i}]
 \]

- Where
 - \(n \) is the issue volume of Catastrophe bond
 - \(r_c \) is the coupon rate of Catastrophe bond
 - \(r_f \) is risk free rate, and
 - \(B_0 \) is the face value of Catastrophe bond
 - \(B(t) \) is the payment the insurer get from the Cat bond once catastrophe occur at time \(t \)
 - \(a \) is the part that once the catastrophe occur, the portion of principal the bond holder will loss
 - \(b \) is the part that once the catastrophe occur, the portion of coupon the bond holder will loss
Some related equations

- The function to calculate Individual losses

\[IL(t) = \begin{cases}
L(t) \cdot (1 - \varphi) & \text{when } R(t) \geq 0 \\
L(t) \cdot (1 - \varphi) + R(t) & \text{when } R(t) < 0
\end{cases} \]

- Where
 - \(\varphi \) is the insurance coverage rate
 - \(L(\tau) \) is the loss occur at time \(\tau \)
 - \(R(t) \) is the risk reserve at time \(t \)
Some related equations

- Calculation of risk reserve

\[
R(\tau) = \text{Capital} \cdot (1+r_f)^\tau + \pi \cdot \sum_{i=1}^{\tau} (1+r_f)^i - n \cdot r_c \cdot B_0 \cdot \sum_{i=1}^{\tau} (1+r_f)^{i-1} + B(\tau) - L(\tau) \cdot \varphi
\]

- Where
 - \(\tau \) is the time the first time catastrophe occur
 - \(r_f \) is risk free rate
 - Capital is the original capital in the first beginning.
 - \(\pi \) is the catastrophe insurance premium income
 - \(n \) is the issue volume of Catastrophe bond
 - \(r_c \) is the coupon rate of Catastrophe bond
 - \(B_0 \) is the face value of Catastrophe bond
 - \(B(\tau) \) is the payment the insurer get from the Cat bond once catastrophe occur at time
 - \(\varphi \) is the insurance coverage rate
 - \(L(\tau) \) is the loss occur at time
Simulation Result

Loss: Weibull Distribution
Application on Typhoon Risk in China

Input:
- Issue volume: 100 billion to 10 trillion RMB
- Coupon rate: 2% to 30% (annually)
- Loss: Typhoon loss in China since 1980 to 2005 adjusted by GDP

Result
- 197 accepted combination of issue volume and coupon rate
- Obviously negative relationship between issue volume and coupon rate
Application on Typhoon Risk in China

All the risk reserve is positive
Moral hazard exist
Adjusted model

- Moral hazard constraint

\[P(B(\tau) > L(\tau)\cdot\varphi) < \gamma \]

- Where
 - \(B(\tau) \) is the payment the insurer gets from the CAT bond when catastrophe occurs
 - \(L(\tau) \) is the catastrophe loss when catastrophe occurs
Problems and future work

- Model optimization
- Application on more risks
- Market reaction research