Interactive cone contraction method for multiple objective optimization problems

Miłosz Kadziński¹ Roman Słowiński²

¹Poznań University of Technology, Poland, milosz.kadzinski@cs.put.poznan.pl
²Poznań University of Technology, Poland, roman.slowinski@cs.put.poznan.pl Institute for Systems Research, Polish Academy of Sciences

CSM’2009, IIASA, August 31 - September 2, 2009
Interactive cone contraction method for MOO problems

Outline

1. Introduction
2. General idea
3. Presentation of the method
4. Conclusions and further research
1. Introduction
2. General idea
3. Presentation of the method
4. Conclusions and further research
Multiple-Objective Optimization Problem

Characteristics

- **Solutions** described by evaluation vectors
- Several objective functions to be optimized simultaneously
- **Conflicting viewpoints**
- **Minimize** \([f_1(x), f_2(x), \ldots, f_k(x)]\)

 s.t. \(x \in S\)
- Assumption: **less is preferred to more**
- Find the **best option**

Interactive cone contraction method for MOO problems
Pareto optimal solutions

- Decision vector $x \in S$ is called Pareto optimal if and only if there is no other $y \in S$ such that $f_i(y) \leq f_i(x)$, $i = 1, \ldots, k$ and $j = \{1, \ldots, k\}$, $f_j(y) < f_j(x)$

- Equally desirable in the mathematical sense

- Different trade-offs

- Synonyms: Pareto-optimal, non-dominated, efficient, non-inferior

Interactive cone contraction method for MOO problems
Pareto optimal solutions

- Pareto optimal set can be generated using some non-interactive a posteriori techniques or different evolutionary (EMO) approaches
- Dominance relation is too poor
- Finding a final solution necessitates participation of the DM
Preference information

Reference point

- **Arbitrary reference point** denoted by \bar{z}
- **Desired** objective function values that the DM would like to achieve (aspiration) or should be achieved (reservation)
- Not necessarily equal to ideal or utopian objective vector
- **Natural** way of expressing desires
Preference information

Pairwise comparisons
- Comparison of non-dominated solutions from a current sample
- Strict ($x^1 \succ x^2$) or weak ($x^1 \succeq x^2$) preference relation
- Holistic judgements, very simple, easy to understand, natural, not too demanding of cognitive effort
- Exercising decisions
Achievement scalarizing function

Characteristics

- Used to **project** a reference point onto the set of efficient solutions

\[s(x, \lambda, f) = \max_i \{ \lambda_i (f_i(x) - \bar{z}_i) \} + \rho \sum_{i=1}^{k} \lambda_i (f_i(x) - \bar{z}_i) \]

- Similar form to an **augmented weighted Chebyshev norm**

- **The less** the value of the function, **the less** the distance

- Some projection directions may be **more desirable**
General idea of the method

Examplary MOO problem

- Two objectives that are to be minimized
- Reference set consisting of three solutions
- Reference point in the origin of the evaluation space
First iteration

- First comparison: $x^2 \succ x^1$
- Indication of the preferred subspace in the evaluation space
- Solutions x^2 and x^3 inside, x^1 outside
General idea of the method

Second iteration

- Second comparison: $x^2 \succ x^3$
- Indication of the preferred subspace in the evaluation space
- Solution x^2 inside, x^1 and x^3 outside
After two iterations

- First comparison: $x^2 \succ x^1$
- Second comparison: $x^2 \succ x^3$
- Many solutions are not longer seen as potential best choices
General idea of the method

- Direction of the isoquants of all compatible achievement scalarizing functions
- Combinations of weights ensuring that reference solutions are compared in the same way as done by the DM
- Search for the boundary weighting vectors
Interactive cone contraction method

Main Principles

- **Systematic dialogue** with the decision maker
- **Specification of a reference point and pairwise comparisons** of non-dominated solutions from a current sample
- **Incorporation** of preference information into weights in the achievement scalarizing function
- **Systematic reduction** of the feasible region (cone) and of the set of solutions that can be chosen as the final one
Step 1

- **Compute the Pareto optimal set** $P(S)_0$ of multiple objective optimization problem

- **66 solutions** satisfying the following condition:
 $$f_1(x) + f_2(x) + f_3(x) = 0.5$$

M. Kadziński, R. Słowiński

Interactive cone contraction method for MOO problems
Step 2

- Ask the DM to specify the reference point for the current iteration, \bar{z}_q.
- The reference point is situated in the origin of the evaluation space, $[0.0, 0.0, 0.0]$.

Interactive cone contraction method for MOO problems
Step 3

- Ask the DM to provide preference information in form of **pairwise comparisons** for the solutions chosen from $P(S)_q$

- First comparison:
 $$x^{24} = [0.10, 0.10, 0.30] \succ x^{43} = [0.20, 0.20, 0.10]$$

- The transition from the preference relations \succ and \succeq to the function values:
 - $x^1 \succ x^2$ implicates that $s(x^1, \lambda^q, f) < s(x^2, \lambda^q, f)$,
 - $x^1 \succeq x^2$ implicates that $s(x^1, \lambda^q, f) \leq s(x^2, \lambda^q, f)$.

- $s(x^{24}, \lambda^q, f) < s(x^{43}, \lambda^q, f)$
Optimize the boundary combinations of weights $\lambda_i, \ i = 1, \ldots, k$ of the compatible achievement scalarizing function

$$\min M\lambda_{r,\text{seq}}^q + N\lambda_{r+1,\text{seq}}^q + \cdots + \lambda_{r+k-1,\text{seq}}^q$$

[a] $s(x^1, \lambda_{\text{seq}}^q, f) - s(x^2, \lambda_{\text{seq}}^q, f) < 0 \Leftrightarrow x^1, x^2 \in P(S)_q : x^1 \succ x^2$

[b] $s(x^l, \lambda_{\text{seq}}^q, f) = \alpha(x^l) + \rho \sum_{i=1}^{k} \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2$

[c] $\alpha(x^l) \geq \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2, \ i = 1, \ldots, k$

[d] $\sum_{i=1}^{k} \lambda_{i,\text{seq}}^q = 1$

[e] $\lambda_{j,\text{seq}}^q \geq \lambda_{j,\text{seq}}^{q-1} : j = r, \ldots, r + k - 1$

[f] $\lambda_{r+k,\text{seq}}^q \leq \lambda_{r+k,\text{seq}}^{q-1}$

where $M \gg N \gg \ldots \gg 1$
Step 4

Optimize the boundary combinations of weights λ_i, $i = 1, \ldots, k$ of the compatible achievement scalarizing function

$$
\min M\lambda_{r,\text{seq}}^q + N\lambda_{r+1,\text{seq}}^q + \cdots + \lambda_{r+k-1,\text{seq}}^q
$$

\begin{align*}
[a] & \quad s(x^1, \lambda_{\text{seq}}^q, f) - s(x^2, \lambda_{\text{seq}}^q, f) < 0 \iff x^1, x^2 \in P(S)_q : x^1 \succ x^2 \\
[b] & \quad s(x^l, \lambda_{\text{seq}}^q, f) = \alpha(x^l) + \rho \sum_{i=1}^k \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2 \\
[c] & \quad \alpha(x^l) \geq \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2, i = 1, \ldots, k \\
[d] & \quad \sum_{i=1}^k \lambda_{i,\text{seq}}^q = 1 \\
[e] & \quad \lambda_{j,\text{seq}}^q \geq \lambda_{j,\text{seq}}^{q-1} : j = r, \ldots, r + k - 1 \\
[f] & \quad \lambda_{r+k,\text{seq}}^q \leq \lambda_{r+k,\text{seq}}^{q-1}
\end{align*}

where $M >> N >> \ldots >> 1$
Step 4

Optimize the boundary combinations of weights λ_i, $i = 1, \ldots, k$ of the compatible achievement scalarizing function

$$
\min M\lambda_{r,\text{seq}}^q + N\lambda_{r+1,\text{seq}}^q + \cdots + \lambda_{r+k-1,\text{seq}}^q
$$

[a] $s(x^1, \lambda_{\text{seq}}^q, f) - s(x^2, \lambda_{\text{seq}}^q, f) < 0 \iff x^1, x^2 \in P(S)_q : x^1 \succ x^2$

[b] $s(x^l, \lambda_{\text{seq}}^q, f) = \alpha(x^l) + \rho \sum_{i=1}^k \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2$

[c] $\alpha(x^l) \geq \lambda_{i,\text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2, i = 1, \ldots, k$

[d] $\sum_{i=1}^k \lambda_{i,\text{seq}}^q = 1$

[e] $\lambda_{j,\text{seq}}^q \geq \lambda_{j,\text{seq}}^{q-1} : j = r, \ldots, r + k - 1$

[f] $\lambda_{r+k,\text{seq}}^q \leq \lambda_{r+k,\text{seq}}^{q-1}$

where $M >> N >> \ldots >> 1$
Optimize the boundary combinations of weights λ_i, $i = 1, \ldots, k$ of the compatible achievement scalarizing function

$$
\min M\lambda_q^{r, \text{seq}} + N\lambda_q^{r+1, \text{seq}} + \cdots + \lambda_q^{r+k-1, \text{seq}}
$$

\[a \] $s(x^1, \lambda_q^{\text{seq}, f}) - s(x^2, \lambda_q^{\text{seq}, f}) < 0 \iff x^1, x^2 \in P(S)_q : x^1 \succ x^2$

\[b \] $s(x^l, \lambda_q^{\text{seq}, f}) = \alpha(x^l) + \rho \sum_{i=1}^{k} \lambda_q^{i, \text{seq}}(f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2$

\[c \] $\alpha(x^l) \geq \lambda_q^{i, \text{seq}}(f_i(x^l) - \bar{z}_{q,i} : l = 1, 2, i = 1, \ldots, k$

\[d \] $\sum_{i=1}^{k} \lambda_q^{i, \text{seq}} = 1$

\[e \] $\lambda_q^{j, \text{seq}} \geq \lambda_q^{j-1, \text{seq}} : j = r, \ldots, r + k - 1$

\[f \] $\lambda_q^{r+k, \text{seq}} \leq \lambda_q^{r+k-1, \text{seq}}$

where $M >> N >> \ldots >> 1$
Step 4

Optimize the boundary combinations of weights \(\lambda_i, \, i = 1, \ldots, k \) of the compatible achievement scalarizing function

\[
\min M\lambda_{r, \text{seq}}^q + N\lambda_{r+1, \text{seq}}^q + \ldots + \lambda_{r+k-1, \text{seq}}^q
\]

\[a\] \(s(x^1, \lambda_{\text{seq}}^q, f) - s(x^2, \lambda_{\text{seq}}^q, f) < 0 \iff x^1, x^2 \in P(S)_q : x^1 \succ x^2 \)

\[b\] \(s(x^l, \lambda_{\text{seq}}^q, f) = \alpha(x^l) + \rho \sum_{i=1}^{k} \lambda_{i, \text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2 \)

\[c\] \(\alpha(x^l) \geq \lambda_{i, \text{seq}}^q (f_i(x^l) - \bar{z}_{q,i}) : l = 1, 2, \, i = 1, \ldots, k \)

\[d\] \(\sum_{i=1}^{k} \lambda_{i, \text{seq}}^q = 1 \)

\[e\] \(\lambda_{j, \text{seq}}^q \geq \lambda_{j, \text{seq}}^{q-1} : j = r, \ldots, r+k-1 \)

\[f\] \(\lambda_{r+k, \text{seq}}^q \leq \lambda_{r+k, \text{seq}}^{q-1} \)

where \(M >> N >> \ldots >> 1 \)
Presentation of the method

Step 5

- Use weighting vectors for all possible permutations of weights to restrict the evaluation space.
- Minimization of λ_1 leads to $[0.0, 0.6, 0.4]$ and $[0.0, 1.0, 0.0]$.
- Minimization of λ_2 leads to $[0.6, 0.0, 0.4]$ and $[1.0, 0.0, 0.0]$.
- Minimization of λ_3 leads to $[0.0, 1.0, 0.0]$ and $[1.0, 0.0, 0.0]$.
Step 6

- Form a set of **solutions** that will be considered as potential best choices in the next iteration
- Check proportions between specific evaluations of solution x
- Check whether an achievement scalarizing function with a direction determined by solution x compares solutions in the same way as done by the DM
- 39 out of 66 solutions left
Presentation of the method

Step 7

- If the DM feels satisfied with at least one solution found during the process, then the procedure stops.
- If the DM concludes that no compromise point exists or some other stopping criteria are satisfied, then the procedure stops without finding the satisfactory solution.
- If the DM wants to retrack to one of the previous iterations and continue from this point, then go back.
- If the DM wants to continue the solution process, then start new iteration.
Presentation of the method

Second iteration

- Reference point unchanged
- Second comparison:
 \[x^{41} = [0.20, 0.10, 0.20] \succ
 \succ x^{13} = [0.05, 0.05, 0.40] \]
- Optimize boundary weighting vectors
- Restrict the evaluation space
Presentation of the method

Second iteration

- Only 2 solutions remaining
- Easy to choose the best option

M. Kadziński, R. Słowiński
Interactive cone contraction method for MOO problems
Summary

- **New interactive approach** for multiple objective optimization problems
- Organization of the **search over the non-dominated set:**
 - Specification of reference points and pairwise comparisons of solutions
 - Incorporation of the preference information in the weights of the achievement scalarizing function
- **All compatible** functions (robust ordinal regression)
- **Intuitiveness**, conviction about what is possible, psychological convergence
Further research

- **Development** of the interactive method:
 - Admitting more diverse preference information
 - Choosing individuals to present for comparison
 - Software with user-friendly interface
 - Case studies

- **Evolutionary interactive cone contraction** MOO method:
 - Integration into an elitist evolutionary multiple objective algorithm, NSGA-II
 - Location of a small set of solutions containing the DM’s ideal option with the highest probability
 - Focus the search and speed up convergence