

Technik & Umwelt

Arnulf Grübler

Accounting for Economic Growth				
Factors in US Nat. Income Growth (%/yr)				
1929 - 1982 (Denison, 1985, U	S Hist.Stat., 1997)			
Employment males:	+ 0.50			
Employment females:	+ 0.88			
Average hours worked*:	- 0.51			
Education, etc.:	+ 0.87			
LABOR:	+ 1.34			
CAPITAL:	+ 0.56			
TECHNOLOGY:	+ 1.06			
TOTAL:	+ 2.96			
Population growth:	+ 1.08			
* Indirect impact of technology				
Technik & Umwelt	Arnulf Grübler			

	1800	2000	factor
World population, billion	1	6	x 6
Life expectancy, vears*	35	75	x 2
Work hours per year*	3,000	1,500	+ 2
Free time over life*	70,000	300,000	x 4
Mobility, km/day* (excl. walk)	0.04	40	x 100
World income, trillion \$	0.5	36	x 70
Global energy use, Gtoe	0.3	10	x 35
Carbon, energy, GtC	0.3	6	x 22
Carbon, all sources, GtC	0.8	8	x 10

	Private	Social
AGRICULTURE		
Evenson et al. 1979	14 - 87	45 - 130
INDUSTRY		
Bernstein/Nadivi 1991	14 - 28	70 - 84
Sveikanskas 1981	10 - 23	60 - 73
Mansfield et al. 1977		
range (17 innov.)	4 - 214	13 - 307
sample mean	25	56
SERVICES	?	?

The Industrial Revolution

- Substitution of human labor by machines
- Substitution of traditional (renewable) energy by fossil fuels (coal)
- Use of new materials, rendered available (geologically, economically) by new technologies for new purposes

David Landes: Prometheus Unbound, 1969.

Technik & Umwelt

Incremental (H) Radical (Hⁿ + S) Systems (Hⁿ + Sⁿ + O) Clusters & Families (Hⁿ + Sⁿ + Oⁿ)

With increasing hierarchy (complexity): larger market size, but slower diffusion.

Technik & Umwelt

Technik & Umwelt

818 ETIS

Increasing Returns

- Firmly established: cost improvements in manufacturing and with increasing market size ("learning"/"experience" curves)
- "new growth" theory: concept of knowledge stocks (need to include knowledge depreciation)
- Agglomeration and network externalities (R/S distribution, "laws": Zipf, Metcalfe,...)

818 ETIS

Learning/Experience Curve Terminology
Costs: <i>C</i> Learning Rate: <i>LR</i> (% cost decline per doubling of output) Progress Ratio: <i>PR</i> = 1 – <i>LR</i> (remaining fraction of initial costs after doubling of output) Learning parameter: <i>b</i> Output: <i>O</i> Learning investment: Cumulative expenditures above break-even value
$C_{t} = C_{0} * (\Sigma_{0}^{t}O)^{-b}$ $PR = 2^{-b}$ $LR = 1 - PR$
e.g. 30% cost reduction per doubling of output: $C_o = 100$ $C_t = 70$ $O_o = 1$ $O_t = 2$ LR = .3 $PR = .7$ $b =51477$

818 ETIS

Innovation & Diffusion Uncertainty

- "Heavier-than-air flying machines are impossible." Lord Kelvin, 1895.
- "I think there is a world market for maybe five computers." Tom Watson, IBM chair, 1943.
 - "But what ... is it good for?" IBM engineer commenting on the microchip in 1968
- "There is no need for any individual to have a computer in their home." Ken Olson, President, Digital Equipment, 1977.
- More fun: http://my.athenet.net/~jlindsay/SkepticQuotes.html

Technik & Umwelt

Arnulf Grübler

Interdependence

- Markets: Supply demand (manufacturing – marketing)
- Technological (e.g. electric cars + grid) need for standards (interoperability)
- Infrastructural (transport AND communication, electricity AND internet)
- Complexity

Technology & Environment

Technological Change		
Stage Invention	Measure/Mechanism Basic R&D, breakthrough	
Innovation	Applied research, demonstration plants	
Niche markets	Investment, learning- by-doing and using	
Commercialization Pervasive diffusion	Standardization, mass production, economies of scale	
Technik & Umwelt	Arnulf Grübler	

A Chronology of UK Railways

- 1769 Watt patents low-pressure steam engine -invention
- 1800 W att patent expires
- 1820 40 km private horse railways
- 1824 Stevenson builds first locomotive plant --(innovation)
- 1825 Stockton-Darlington railway line opens
- 1830 Opening of Manchester-Liverpool, national railway network: 157 miles (niche market)
- 1845 3931 km railways (.2% of coal to London transported by rail)
- 1875 23,365 km railways (65% of London's coal arrives by rail) – diffusion midpoint
- 1920s: 32,846 km railways (70-80% of all goods and passenger traffic by rail) – saturation and onset of decline

Summary Block 1

- · TC main source of productivity and output growth (and indirectly of environmental impacts)
- Tech= hardware+software+"orgware" •
- . Tech = embodied (artifact) + disembodied knowledge (know how, know why)
- . Lifecycle stages: invention, innovation, niche markets, diffusion, senescence
- Dominant phase: Diffusion (adoption of new technologies) •
- Social processes work at all stages (social construction of technology) •
- .
- Technology properties not *ex ante* given but <u>constructed</u> (innovation, economics, actor networks)
- Main drivers of change:
- returns to scale and scope (+/-)
 knowledge: learning (+), knowledge depreciation/obsolescence (-)
 interdependence: spillovers, clustering (+/-)
- uncertainty (-)