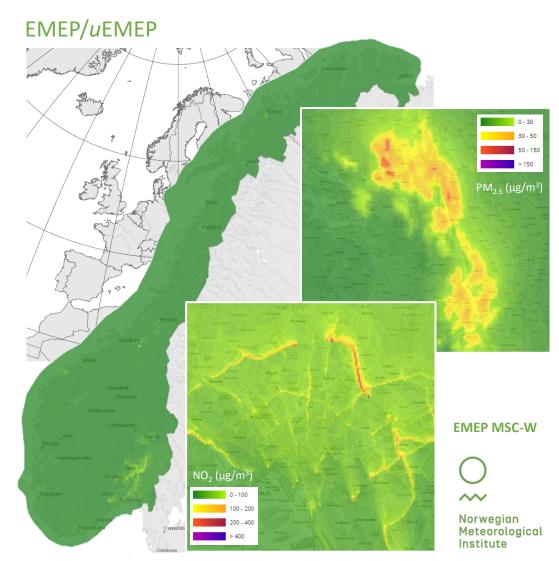


Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe

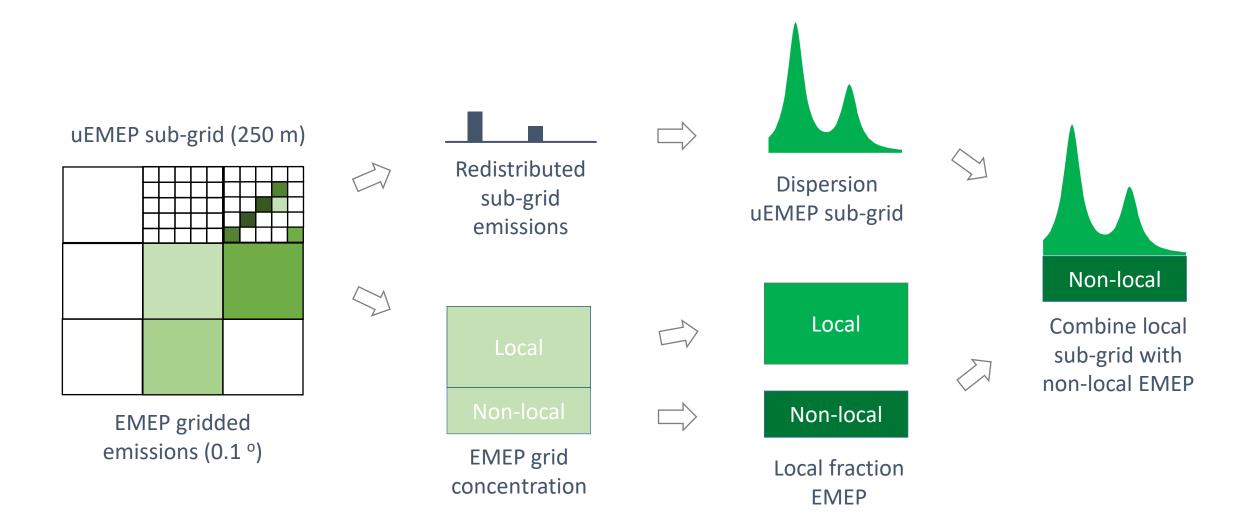

Recent applications of uEMEP for fine scale modelling in Europe

Bruce Rolstad Denby, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli (EMEP/MSC-W, MET Norway)

EPCAC Nov. 2021

Contents

- What is uEMEP?
- Recap of last presentation
- Applications in Norway
- Applications for FAIRMODE
- Applications for the DGENV
- Relevance for EPCAC

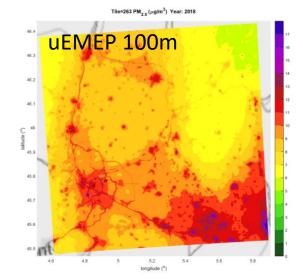


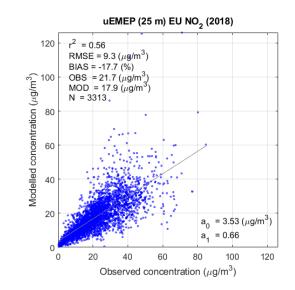
©kartverket/norgeskart.no

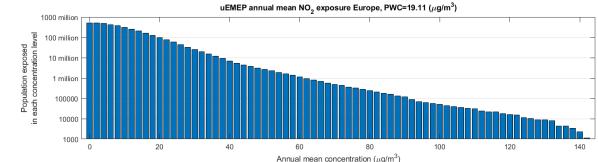
What is uEMEP?

- uEMEP (urban EMEP) is an extension of the EMEP MSC-W model used to downscale EMEP to around 100 m
- It can be inserted anywhere in the EMEP domain and deals with double counting of emissions by utilizing the 'local fraction' output from EMEP
- uEMEP dispersion is calculated using a Gaussian dispersion model
- It can be run on hourly data (Norwegian forecast) or can calculate annual means using a rotationally symmetric dispersion kernel (European application)
- Emissions can be provided in two ways. Using independent sub-grid emissions (Norwegian forecast) or by redistributing EMEP gridded emissions using proxy emission data (Europe)
- Source contributions are calculated for each downscaled sector and pollutant
- Maps are made between 50 m and 250 m resolution and calculations at individual receptor points are at 25 m

How does uEMEP downscaling work ?

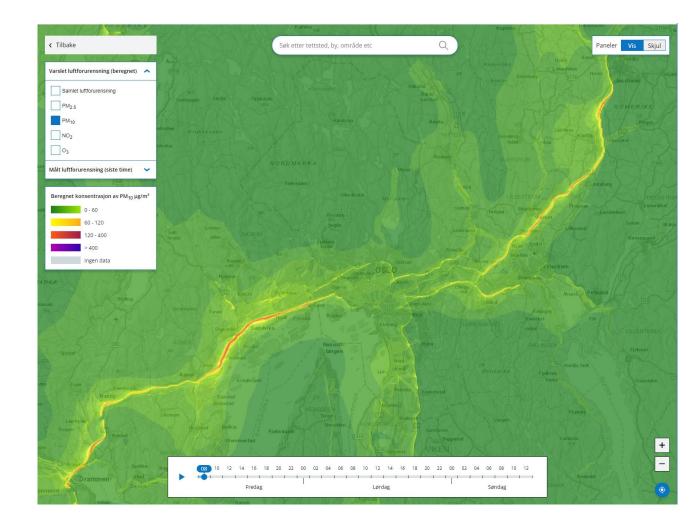

Some points


- Currently downscaled sources include traffic, residential heating, shipping, off road, aviation
- The uEMEP 'local' downscaling calculation extends over a limited region. In the European
 application this is ± 0.1°. The uEMEP calculations represent all sub-grid emissions within these
 regions
- Outside of this region, or for sectors that are not downscaled, EMEP provides the 'non-local' contribution
- Downscaling is limitted to primary emissions (NO_x is downscaled and converted to NO_2)
- The sub-grid traffic data are line sources so higher resolutions will better reflect the traffic contribution and local concentration gradients
- The sub-grid resolution of residential combustion (and other) proxy emissions is 250 m so any higher resolution calculations will not improve these contributions
- 250 m population data is used for exposure


Recap of previous presentation

• Example maps for Europe

• Validation for NO₂ and PM_{2.5}

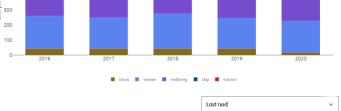

• Exposure in Europe

Activities in Norway

Air quality forecasting service

https://luftkvalitet.miljodirektoratet.no/

Søk etter tettsted, l	by, område etc				
Varslet luftforu Luftkvaliteten varieren	rensning r lokalt, også innenfor kommu	uner.			
Steder	Nå	Kl. 14 - 24	l morgen		
<u>Oslo</u>	Lite	Lite	Lite		
Bergen	Lite	Moderat	Moderat	Mine mest besøkte steder Trondheim(Trondheim)	
Trondheim	Lite	Moderat	Høy	Kartvisning	
Stavanger	Lite	Lite	Lite		
<u>Bærum</u>	Moderat	Høy	Moderat		
Kristiansand	Lite	Lite	Lite		
<u>Varselet</u> er basert på bere	egninger utført av Meteorologisk ir	nstitutt. Data for "I morgen" visi	es først etter at varslet er oppda	itert (oppdateres hver morgen).	
Forurensningsr	nivå			Luftforurensning	
Forurensningsnivåene er vist ved hjelp av fargekoder (forurensningsklasser).				Svært høy	

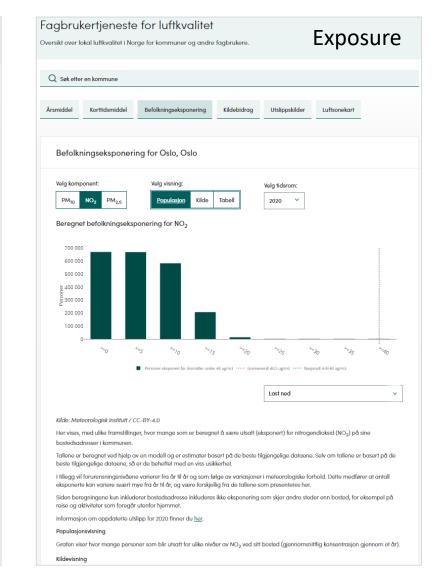


Expert user service: maps/exposure/sources/emissions for all municipalities

https://www.miljodirektoratet.no/tjenester/fagbrukertjeneste-for-luftkvalitet/

agbrukertjeneste for lu	Maps		
			•
Q Søk etter en kommune			
Årsmiddel Korttidsmiddel Befolknin	gseksponering Kildeb	idrag Utslippskilder	Luftsonekart
Årsmiddel for Oslo, Oslo			Målestasjoner Beregnet
V-la harman			
	dsrom:		
PM ₁₀ NO ₂ PM _{2,5} 2020) ~		
Beregnet årsmiddelkonsentrasjon a	NO.		
beregner arsmiddeikonsenn asjon a	in no ₂	Libridge	Constant of North
1072		Sarat Literate	Stylla Ran
Departer Departed - Proper		Solamkogai	Gjelerssen
Sunda Colores			inter the state
Fostanti Vition		Estiliaren.	Reports Factor
and	Hectory		areas and
Odrah.		Apos	
Hose		Time	Fight Fight
sta Martin	Partient Service 1		Ulros III
Balance +	en Der Gregorige	Harris	Lotenik
Stoneth Lysokkr	- Contrain - Contraint - Contraint	Enne Akin	ana X
Wk Fornatú	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Livage Control Control
	House Chief of	Marganet	LÓHENSHOG
Sanaya		A State of State of State	Marholici
µg/m ³ esodd-	in and the second		Alarda
0 - 20 µg/m ³ tangen	5 83 2	Lord-strain Romakarps	E1400
20 - 40 µg/m ³ 20 - 60 µg/m ³	A Less	Antimer .	· · · · · ·
60 - 100 µg/m ³	Atamata	-10 1 1 1 1 1	Sta
1 and the second second			fivito // Leafed Kartverket, Geodate AS

Fagbrukertjeneste for luftkvalitet **Emissions** Oversikt over lokal luftkvalitet i Norge for kommuner og andre fagbrukere. Q Søk etter en kommune Utslippskilder Årsmiddal Korttidsmiddel Befolkningseksnonering Kildobidraa Luftsonekart Utslippskilder for Oslo, Oslo Vela komponen Velg visning: NOx PM_{2.5} Tabel Utslippskilder til PM₁₀ innenfor kommunegrensen (tonn per år) 600 500 300


Kilde: Meteorologisk institutt / CC-BY-4.0

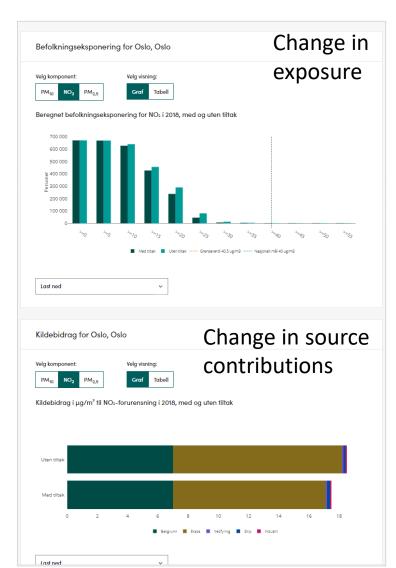
Graf og tabell viser årlige utslipp (tonn/år) av svevestøv (PM10) fra ulike kilder innenfor kommunegrensen. Informasjon om oppdaterte utslipp for 2020 finner du <u>hør</u>.

Hvor mye de enkelte kildene bidrar til konsentrasjonen av luftforurensning i luften vi puster inn, avhenger av hvor og når utslippene finner stød, topografi og meteorologiske forhold. Gå til fanen kildebidrag for å se hvor mye de ulike kildene bidrar til konsentrasjonen ved bakken.

Her kan du lese om ulike typer forurensning og hvor den kommer fra

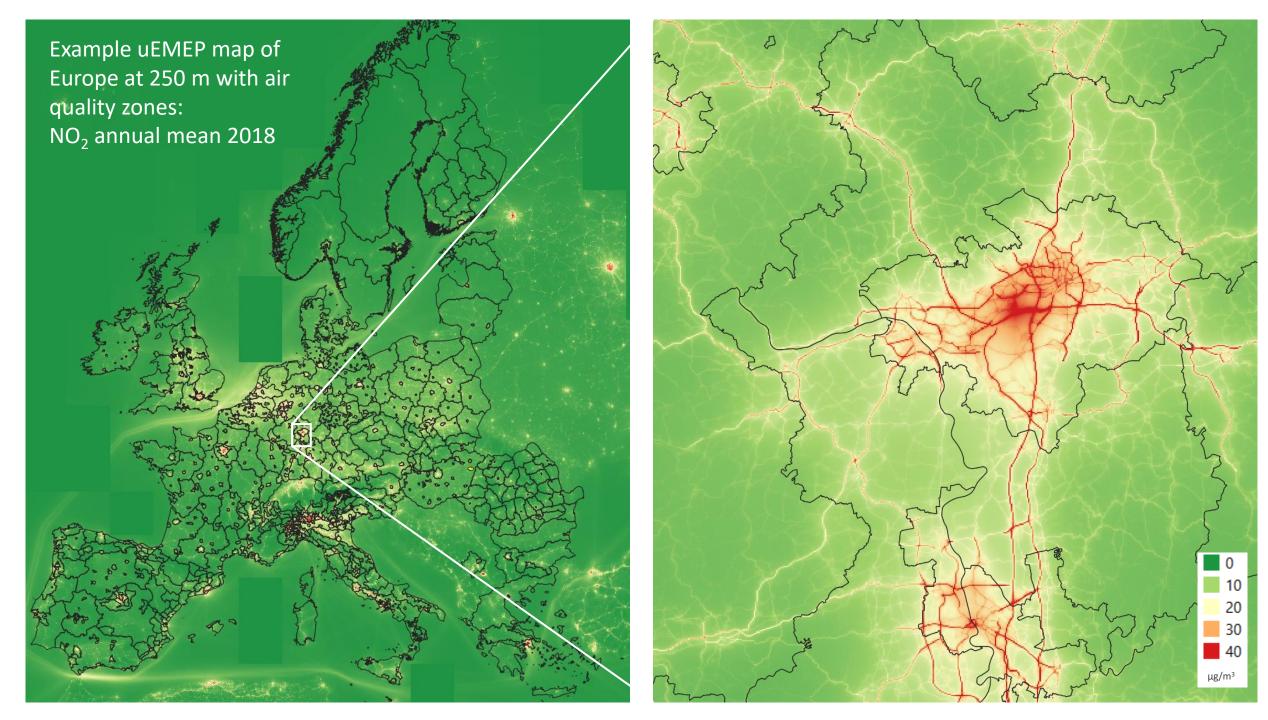
+ Les mer om dataene

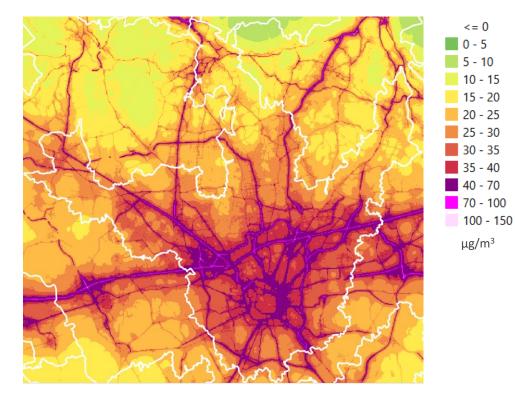
Kilde: Meteorologisk institutt / CC-BY-4.0


Kartet viser beregnet gjennomsnittlig konsentrasjon i lepet av et år (årsmiddelkonsentrasjon) av nitrogendioksid (NO₂). Årsmiddelet er et gjennomsnitt av alle døgnkonsentrasjoner gjennom hele kalenderåret. Velges en periode på flere år, vises et gjennomsnitt av årsmidlene.

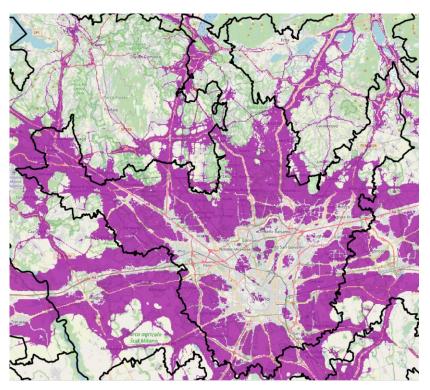
Last ned

Scenario calculator

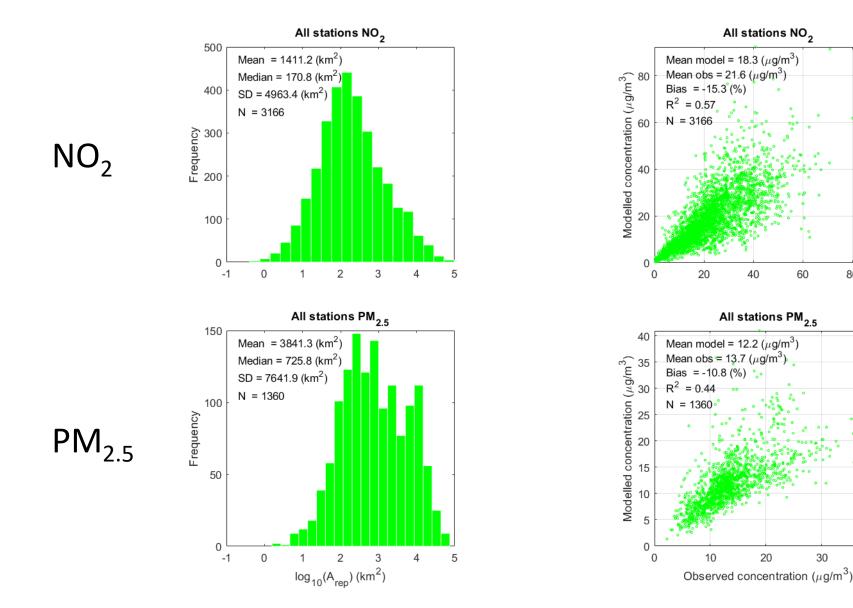

https://www.miljodirektoratet.no/tjenester/tiltakskalkulator-for-luftkvalitet/


Activities in FAIRMODE

Spatial representativeness area (SRA)

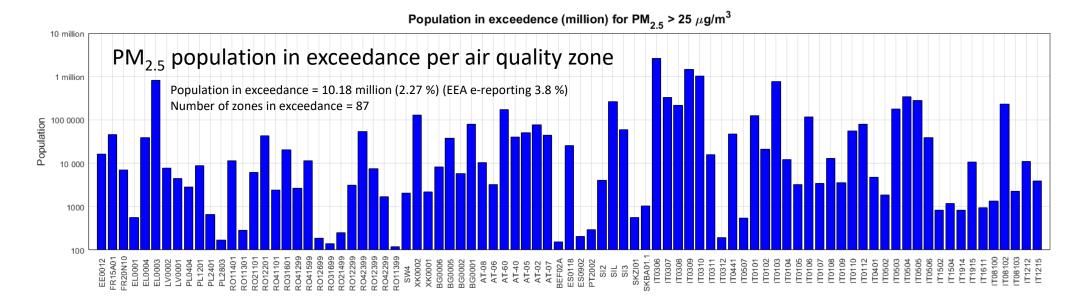

- Use of models to calculate spatial representativeness of monitoring sites
- Many possible ways of defining this but a simple method has been chosen
- The monitoring station's SRA is the area within an airquality zone with the same concentration, ± a threshold value, as at the monitoring site
- Varying thresholds tested include 20%, 10%, 5% for NO₂ and PM_{2.5}
- Advantage of uEMEP is the calculation can be made at all sites in Europe in a homogenous way
- Disadvantage is that at 100 m it still does not resolve street canyons and other micro hotspots
- Results shown as frequency distributions

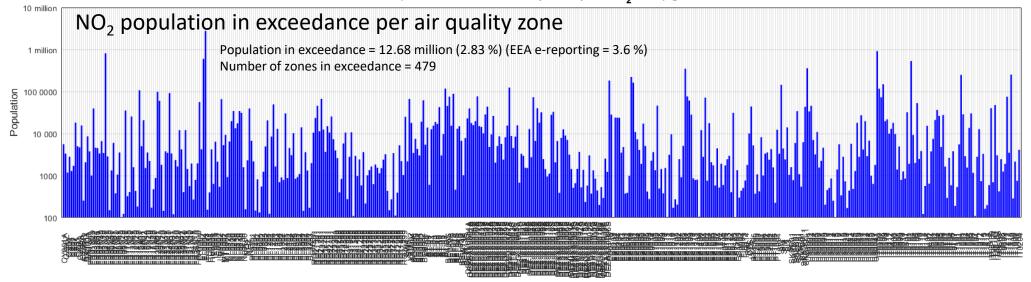
100 m resolution spatial representativeness NO₂


Contour map for NO_2 (2018) Milan air quality zone.

Threshold 20%

A measurement station somewhere in the Milan AQ zone that measures 30 $\mu g/m^3$

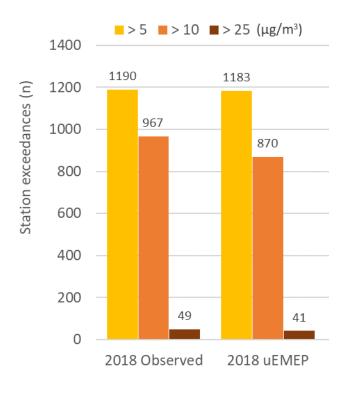

Spatial representativeness area (±20%) for all stations in Europe, NO₂ and PM₂₅


Exceedance reporting

- When measurements indicate exceedances then the area, the population and the length of road in exceedance must be reported from within that air quality zone
- As an excercise we assessed the population and area in exceedance for all air quality zones (668) in Europe based on uEMEP 100 m calculations
- $PM_{2.5}$: 87 of the zones were in exceedance and 10.2 million people were exposed above the limit value (> 25 µg/m³). Area in exceedance is 6506 km²
- NO₂: 479 of the zones were in exceedance and 12.7 million people were exposed above the limit value (> 40 μ g/m³). Area in exceedance is 4806 km²

Population in exceedance for EU air quality zones

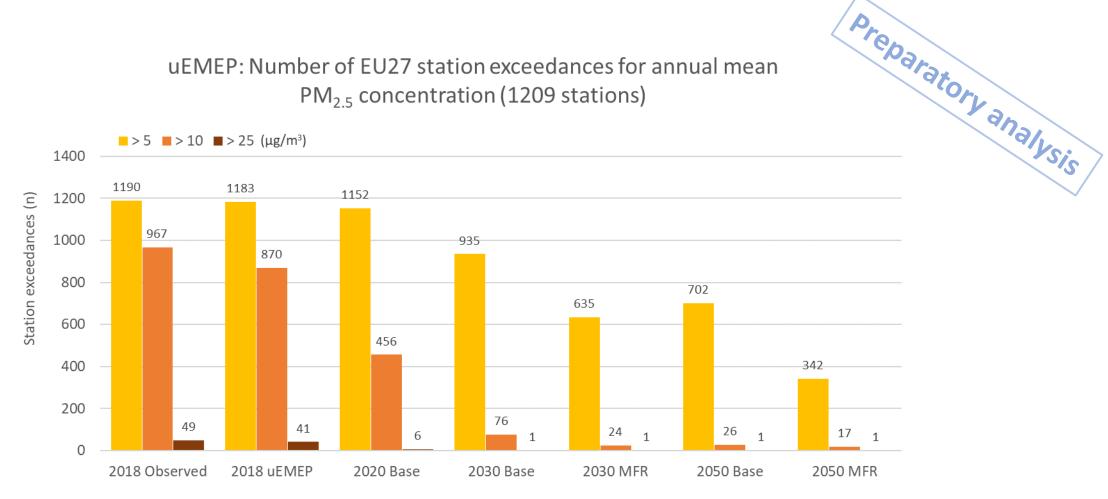
Population in exceedence (million) for NO₂ > 40 μ g/m³

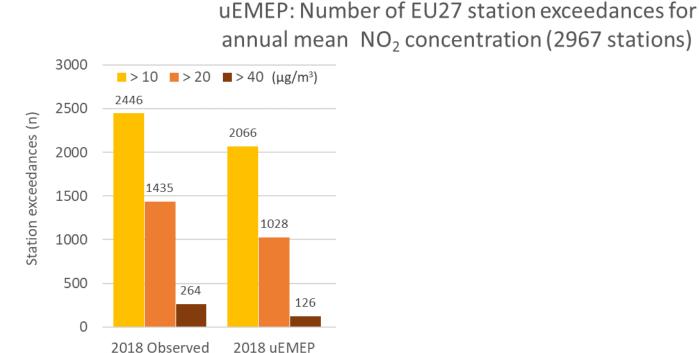

Activities for the European Commission

Review of the Ambient air quality directive

- Part of a consortium contracted by DGENV to assess air quality guidlines for the coming review of the AAQD
- A number of scenarios are produced by IIASA using GAINS that will optimise costs for background PM_{2.5} concentrations
- EMEP is then applied to these scenarios for a wider range of pollutants
- uEMEP is used to downscale these scenarios for improved exposure and exceedance calculations for the EU27
- Still in progress but a preporatory analysis was presented at the September 22'nd workshop organised by the commission
- A base case with all planned measures (Base) and a Maximum feasible reduction (MFR) were calculated for 2020, 2030 and 2050

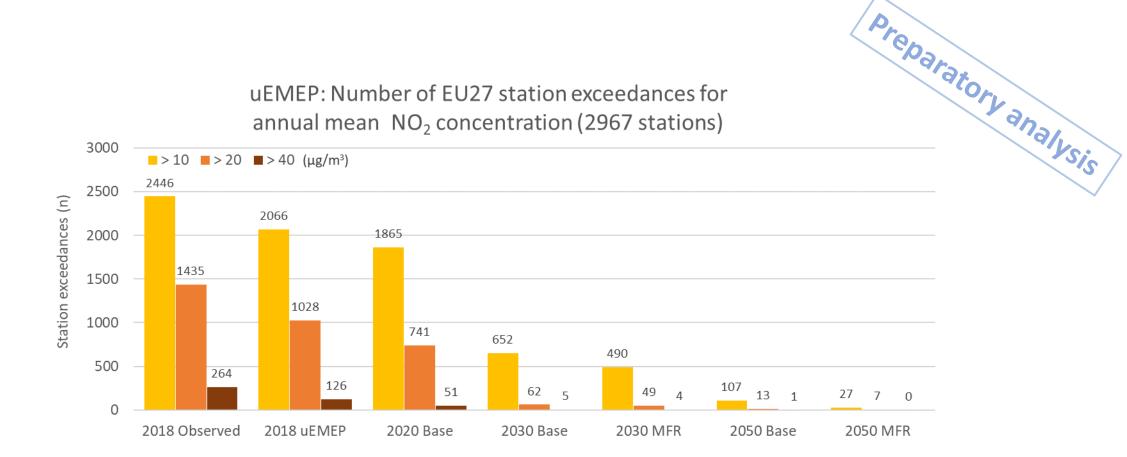
PM_{2.5} exceedance calculations at **monitoring sites** (25 m) using EMEP/uEMEP: validation using country submitted emissions


uEMEP: Number of EU27 station exceedances for annual mean PM_{2.5} concentration (1209 stations)


uEMEP bias = -9%

PM_{2.5} exceedance calculations at **monitoring sites** (25 m) using EMEP/uEMEP: scenarios using GAINS emissions

> uEMEP: Number of EU27 station exceedances for annual mean PM_{2.5} concentration (1209 stations)



NO₂ exceedance calculations at **monitoring sites** (25 m) using EMEP/uEMEP: validation using country submitted emissions

annual mean NO₂ concentration (2967 stations)

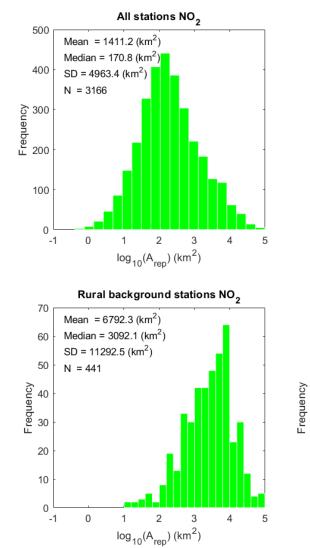
NO₂ exceedance calculations at **monitoring sites** (25 m) using EMEP/uEMEP: scenarios using GAINS emissions

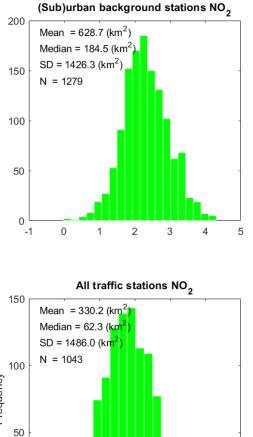
Relevance for EPCAC

Advantages of uEMEP in Europe

- Provides a consistent modelling methodology across Europe, covering all cities, large or small and provides insight into differences between countries and reported country emissions
- Provides source contributions for downscaled sectors that are emitted locally, allowing the impact of local measures to be quickly assessed by post-processing
- In combination with EMEP source receptor calculations using 'local fractions' uEMEP/EMEP can provide source contributions across all scales
- Can provide a reference/benchmark for EPCAC European city studies

Disadvantages of uEMEP in Europe


- Room for improvement in the uEMEP proxy data and/or the EMEP emission data for PM
- Uses basic proxy data to redistribute emissions that are globally available. Local modelling should have better high resolution emission data and hence results (as seen in Norway)
- Can only downscale primary emissions
- Annual mean concentrations do not provide information on percentiles. Hourly calculations for all of Europe at 100 m are computationally prohibitive but for individual cities this is possible.


Documentation, data and models

- Regional scale model: EMEP MSC-W model rv4.34 (0.1° x 0.1°)
 - <u>https://github.com/metno/emep-ctm</u>
- Downscaling model: uEMEP v6 (250 25 m)
 - <u>https://github.com/metno/uEMEP</u>
- **Regional scale emissions:** EMEP 0.1° with GNFR3 replaced by TNO Ref2 emissions including condensables
 - <u>https://www.ceip.at/webdab-emission-database</u>
- **Downscaling population data:** GHS-POP, Global Human Settlement-Population, (9 arcsec)
 - <u>https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php</u>
- Downscaling traffic data: Open street maps
 - <u>https://www.openstreetmap.org/</u>
- uEMEP model description and Norwegian application:
 - https://gmd.copernicus.org/articles/13/6303/2020/
- EMEP local fraction model description:
 - <u>https://gmd.copernicus.org/articles/13/1623/2020/</u>
- uEMEP application in Europe: EMEP report 2020 and GMD article in review
 - <u>https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf</u>
 - <u>https://gmd.copernicus.org/preprints/gmd-2021-198/</u>

Extra slides

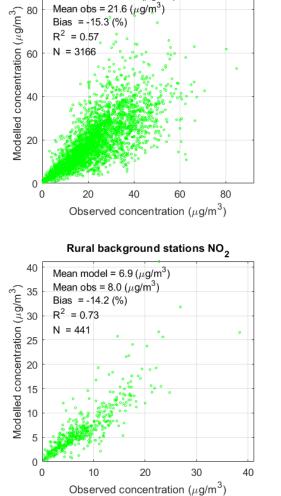
Spatial representativeness area NO₂

2

 $\log_{10}(A_{rep}) \, (km^2)$

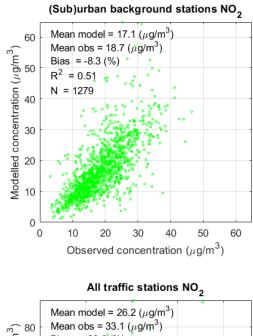
1

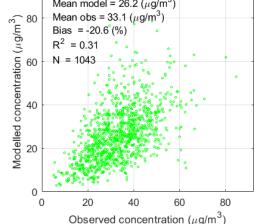
3

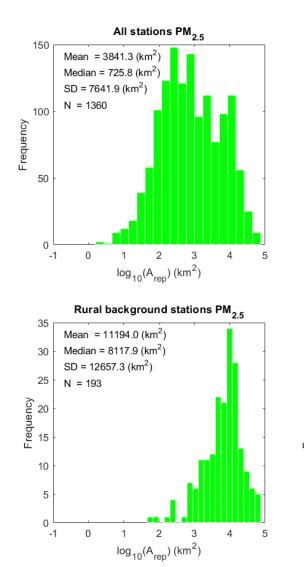

4

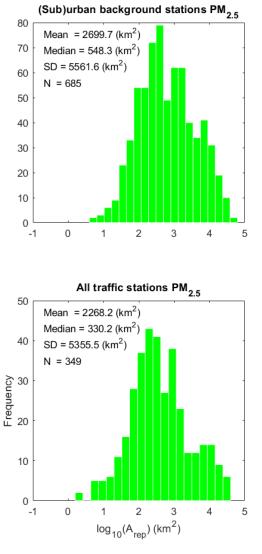
5

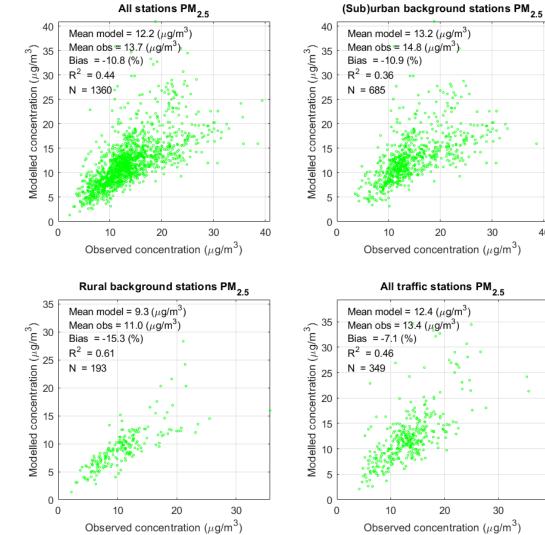
0

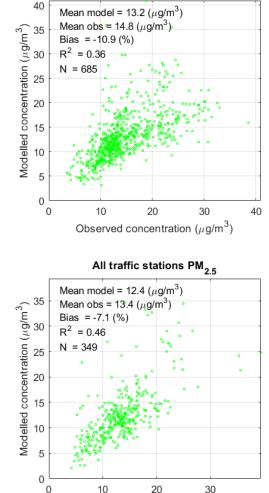

-1


0


All stations NO2


Mean model = 18.3 (μ g/m³)





Spatial representativeness area PM_{2.5}

Observed concentration (μ g/m³)