

Energie T + CF + Q + A stochastic optimization approach to determine efficient environmental protection strategies

Christian Schieberle

46th Task Force on Integrated Assessment Modelling (TFIAM), 2-3 May 2017, Paris

Energieverlusi 7 * As * (

Overview

Approach to determine efficient environmental protection strategies

- Objectives
- Methodology
- Meta-regression based evidence on travel demand elasticities
- Case study: Passenger transport in 2030 in EU28+2
- Conclusion and future work

Objectives

Approach to determine efficient environmental protection strategies

• General objective:

Cost-efficient environmental protection strategies by trading-off the avoidance of impacts against cost and loss of surplus

• Scope of this presentation:

- Passenger transport as a representative example for sectors in which considerable technical progress has already been achieved; necessity to model behavioural change (→ MRA)
- Account for decision-maker's risk attitude;

i.e. deal with uncertainty of impact assessment as well as uncertainty of response to policy implementation (→ stochastic CBA)

Methodology

Summary of main methodological aspects

- Cost-benefit analysis including avoided damages (assessed via IPA) and induced costs (including utility losses)
- Degrees of freedom (i.e. variables): policy implementation (fares, tolls, taxes, etc.)
- Objective: maximization of net benefit (EV, CVaR, weighted)
- Implementation:
 - Uncertainty of response estimated by meta-regression
 - Non-linear nature of response accounted for by piecewise-linear approx.
 - Uncertainty of individual IPA steps (from emission to monetized impacts)
 - Stochastic optimization: MIP formulated in GAMS EMP

Meta-regression analysis (MRA)

Systematic literature review to determine meta-regression models

Query terms	Filter	Database	Studies		
Any words: Fuel, Petrol, Diesel, Gasoline	-	BITRE	29		
('fuel' OR 'petrol' OR 'diesel' OR 'gasoline')	English,	TRIS	24		
AND ('elasticity' OR 'elasticities')	1950-2016				
('fuel' OR 'petrol' OR 'diesel' OR 'gasoline')	English,	ITRD	5		
AND ('elasticity' OR 'elasticities')	1950-2016				
Any words: Bus, Coach, Train, Subway,	-	BITRE	51		
Metro, Public					
('bus' OR 'coach' OR 'train' OR 'subway' OR	English,	TRIS	11		
'metro' OR 'public')	1950-2016				
AND ('fare' OR 'price' OR 'time' OR 'ticket')					
AND ('elasticity' OR 'elasticities')					
('bus' OR 'coach' OR 'train' OR 'subway' OR	English,	ITRD	7		
'metro' OR 'public')	1950-2016				
AND ('fare' OR 'price' OR 'time' OR 'ticket')					
AND ('elasticity' OR 'elasticities')					
Separate searches: Toll, Congestion, Road pricing	-	BITRE	9		
('toll' OR 'congestion' OR 'road pricing')	English,	TRIS	9		
AND ('elasticity' OR 'elasticities')	1950-2016				
('toll' OR 'congestion' OR 'road pricing')	English,	ITRD	9		
AND ('elasticity' OR 'elasticities')	1950-2016				
Parking	-	BITRE	10		
'parking' AND ('elasticity' OR 'elasticities')	English,	TRIS	6		
	1950-2016				
'parking' AND ('elasticity' OR 'elasticities')	English,	ITRD	1		
	1950-2016				
Total study records returned			172		
Excluded due to duplication, non-accessibility or irrelevance					
Total studies in database			103		
Total elasticity estimates in database			1397		

- Data sources:
 - TRID (TRB+OECD)
 - BITRE Elasticity database
 - TDM encyclopedia
- Focus:
 - PT wrt. fuel price
 - PT/IT wrt. bus fares
 - PT/IT wrt. city transit fares (rail-bound)
 - Toll / road pricing
 - IT / PT wrt. train fares
 - IT / PT wrt. coach fares

300 · # estimates 100 · 0. 1985-1989 1965-1969 1970-1974 1975-1979 1980-1984 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015+ 1960-1964 Asia & Mid East Europe M & S America not given Australia & NZ N America Int'l Region type Time horizon 500 1000 500 1000 non-urban/regional urban or CBD, suburban not given medium-term short-term not given inter-urban long-term Time of the day Country group 500 1000 500 1000 0

off-peak

peak

not given

Asia & Mid East Australia & NZ Europe Int'l M & S America N America not given

Historical data availability per major world region

Meta-regression analysis (MRA)

Example: Country-specific short-/long-term PT cross-demand elasticity of fuel price

Variable	Coefficient (Std. Error)	t-value	p-value	
short-term (adj. $R^2=0.90$)				
GDP per cap., PPP [1000 Intl\$2011]	-0.0501	-3.711	0.0048	**
	(0.0135)			
Population density $[1000 \text{ ppl/km}^2]$	0.7673	1.735	0.1168	
	(0.4422)			
Rail track length per area of land	0.0584	1.552	0.1552	
[km], logarithm	(0.0376)			
Year of reference	0.0011	4.708	0.0011	**
	(0.0002)			
long-term (adj. $R^2=0.96$)				
GDP per cap., PPP [1000 Intl\$2011]	-0.0705	-1.927	0.0902	
	(0.0366)			
Population density [1000 ppl/km ²]	2.7601	3.698	0.0061	**
	(0.7464)			
Rail track length per area of land	0.2877	8.209	0.0000	***
[km], logarithm	(0.0350)			
Year of reference	0.0020	3.776	0.0054	**
	(0.0005)			

Meta-regression analysis (MRA)

Example: Country-specific short-term PT cross-demand elasticity of fuel price

Case study: Passenger transport in EU28+2 Model set-up

- 2030 reference demand levels adjusted for income
- Selection and parametrization of policies (under constraints), e.g.
 - Fuel tax
 - Public transport fares (bus, metro, trains, ...)
 - City toll
- Objective function
 - Risk-neutral case (EV)
 - Risk-averse case (CVaR_{0.2} ~ EV of 20% worst cases)
 - Parametrized risk-attitude:

 $(\phi * EV) + ((1-\phi) * CVaR_{\Theta})$, ϕ in [0; 1], Θ in {0.2, 0.1, 0.05, ...}

Case study: Passenger transport in EU28+2 Different risk attitudes

Case study: Passenger transport in EU28+2

Avoided damages in risk-neutral case (k-EUR per country per income group)

PM_EXH	NOX_EXH	SO2_WTT	CO2_EXH	N2O_WTT
PM_NONEXH	NOX_WTT	NMVOC_EXH	CO2_WTT	CH4_EXH
PM_WTT	SO2_EXH	NMVOC_WTT	N2O_EXH	CH4_WTT

Conclusions

wrt. results of the case study

- Both scenarios yield net benefit; only moderate risk premium
- Summary of policies:
 - General tendency to lower fares to ,pull' people towards public transport in urban areas
 - Favourable to implement city toll, especially for vans
 - Avoid to ,push' people away from individual travel using a fuel tax as people's response is highly uncertain; might even cause rebound effects
 - Transport inequality will even be aggravated spend money on compensation payments for higher acceptance

Vielen Dank!

Christian Schieberle

E-Mail cs@ier.uni-stuttgart.de Telefon +49 (0) 711 685- 87847 Fax +49 (0) 711 685- 87873

Universität Stuttgart