## $\mathrm{CH}_{4}$ trends and interactions with $\mathrm{O}_{3}$ at the European and global levels

Bertrand Bessagnet, Claudio A. Belis, Monica Crippa, Frank Dentener, Rita Van Dingenen, Philippe Thunis

European Commission (EC), Joint Research Centre (JRC)
Dir. C, Clean Air and Climate Unit

## Outline of the presentation

- The global $\mathrm{CH}_{4}$ trends
- Trends of anthropogenic $\mathrm{CH}_{4}$ emissions
- Sectoral break-down of anthropogenic $\mathrm{CH}_{4}$ emissions
- Future $\mathrm{CH}_{4}$ emissions
- Ozone trends and links to $\mathrm{CH}_{4}$
- Air quality impacts of $\mathrm{CH}_{4}$ emissions
- Conclusions


## The global $\mathrm{CH}_{4}$ trends




Methane is an important greenhouse gas (GHG) that has a 100-year warming potential about 29 times larger than carbon dioxide $\left(\mathrm{CO}_{2}\right.$; for fossil gas)

According to AR6 (IPCC, 2021) almost half of the total net global warming since pre-industrial levels is explained by increased levels of $\mathrm{CH}_{4}$. This means that, about $0.5^{\circ} \mathrm{C}$ of the observed increase of $1.1^{\circ} \mathrm{C}$ in global temperatures can be attributed to $\mathrm{CH}_{4}$ emissions.

## Trends of anthropogenic $\mathrm{CH}_{4}$ emissions



Methane emissions (Mt CH 4 yr-1): (a) global, (b) EU27, (c) by world region (Source EDGAR V8.0)

## Sectoral break-down of anthropogenic $\mathrm{CH}_{4}$ emissions



Global $\mathrm{CH}_{4}$ emissions in 2022 with sector specific shares and regional total emissions ( $\mathrm{Mt}=\mathrm{Tg}$ ) for major world regions (Source: EDGARv8.0).

## Future $\mathrm{CH}_{4}$ emissions



Trajectories of $\mathrm{CH}_{4}$ emissions for various scenarios in the frame of the modelling exercise CMIP6 from (Gidden et al., 2019)

Evolution of $\mathrm{CH}_{4}$ emissions from three main sectors in 2050 compared to 2010 according to 16 different scenarios
(SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, RCP2.6, RCP-4.5, RCP-6.0, RCP-8.5, GECO-1.5, GECO-NDC-LTS, GECO-REF, ECLIPSE-v6b-CLE, MFR, NFC)
Energy emissions may increase by 70\% or decrease by $30-80 \%$
Agriculture emissions range from $80 \%$ increase to $40 \%$ decrease

Changes in the previous two sectors are rather coherent across scenarios

Waste emissions may increase by $70 \%$ to $130 \%$ or decrease up to $80 \%$
Trends are less coherent with ENE, AGR

## Ozone trends and links to $\mathrm{CH}_{4}$


$\mathrm{O}_{3}$ precursors: $\mathrm{NO}_{\mathrm{x}}-\mathrm{VOC}$ and $\mathrm{CH}_{4}$ $\mathrm{CH}_{4}$ and $\mathrm{O}_{3}$ are connected through largescale atmospheric chemistry and transport processes. Increasing $\mathrm{CH}_{4}$ concentrations may partly contribute to these increasing trends or, in regions where $\mathrm{O}_{3}$ declines due to local-to-regional air pollutant emission reductions, counteract these efforts.

Comparison of modelled (orange and blue envelopes) and satellite-observed (gray envelope) trends in the tropospheric ozone burden between $60^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$. Means of the model data are shown as circles with the vertical lines reflecting $\pm 1$ standard deviation of the mean. The number of models used in calculating the means are displayed in the circles (Archibald et al., 2020)
NOx emissions from international shipping over the high seas play a large role in the hemispheric-scale response of surface ozone to changes in methane (Butler et al., 2020).

## Air quality impacts of $\mathrm{CH}_{4}$ emissions (1)

Exposure to ozone


Year 2015 Ozone exposure metric SDMA8h

Exposure to ozone attributable to $\mathrm{CH}_{4}$ emissions


Projected change in ozone exposure metric SDMA8h over Europe, relative to year 2015, as a consequence of the global $\mathrm{CH}_{4}$ emission trends

Source: JRC TM5-FASST, with ECLIPSE V6b scenarios (IIASA, 2019)

## Air quality impacts of $\mathrm{CH}_{4}$ emissions (2)

Change in mortality associated with ozone attributable to $\mathrm{CH}_{4}$ emissions

Global mortality


Change in global mortalities from exposure to $\mathrm{O}_{3}$ from global $\mathrm{CH}_{4}$ emissions in 2030 (blue bars) and 2050 (orange bars), relative to exposure of year $2015 \mathrm{O}_{3}$ levels

Mortality in HTAP2 Europe region


Change in mortalities in HTAP2 Europe region from exposure to $\mathrm{O}_{3}$ from global $\mathrm{CH}_{4}$ emissions in 2030 (blue bars) and 2050 (orange bar), relative to exposure of year $2015 \mathrm{O}_{3}$ levels

Source: JRC TM5-FASST, with ECLIPSE V6b scenarios (IIASA, 2019)

## Air quality impacts of $\mathrm{CH}_{4}$ emissions (3)

Change in mortality associated with ozone attributable to $\mathrm{CH}_{4}$ emissions


Year $2050 \mathrm{O}_{3}$ differences in global mortality attributable to $\mathrm{CH}_{4}$ relative to year 2015 split by anthropogenic sources

## Air quality impacts of $\mathrm{CH}_{4}$ emissions (4)

Change in mortality associated with ozone attributable to $\mathrm{CH}_{4}$ emissions


Year $2050 \mathrm{O}_{3}$ differences in global mortality attributable to $\mathrm{CH}_{4}$ relative to year 2015 split by anthropogenic sources
Source: JRC TM5-FASST, with ECLIPSE V6b scenarios (IIASA, 2019)

## Summary of relative impacts due to $\mathrm{CH}_{4}$ induced $\mathrm{O}_{3}$

Percentage change in $\mathrm{CH}_{4}$-related $\mathrm{O}_{3}$ mortalities relative to 2015 exposure levels

|  | High emission scenarios |  | Low emission scenarios |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Global | Europe | Global | Europe |
| 2030 | 46\% to 49\% | 28\% to 31\% | -4\% to 1\% | -13\% to -17\% |
| 2050 | 112\% to 123\% | 68\% to 78\% | 7\% to 20\% | -7\% to -16\% |
| Percentage change in crop yield loss (RYL) relative to 2015 (4 crops) |  |  |  |  |
|  | Global | Europe | Global | Europe |
| 2030 | 13\% to 16\% | 17\% to 20\% | -32\% to -37\% | -27\% to -32\% |
| 2050 | 35\% to 47\% | 43\% to 55\% | -36\% to -45\% | -32\% to -41\% |
| Change in crop economic loss relative to 2015 (million USD) |  |  |  |  |
|  | Global | Europe | Global | Europe |
| 2030 | 142 to 184 | 17 to 20 | -442 to -497 | -34 to -39 |
| 2050 | 404 to 566 | 43 to 57 | -497 to -590 | -39 to -48 |

## Conclusions

- About $60 \%$ of the current global anthropogenic methane is emitted by sources like agriculture, landfills and wastewater, and the production and pipeline transport of fossil fuels, while ca. $40 \%$ is from natural sources.
- Asia represents more than $50 \%$ of world methane emissions in 2022.
- While ozone peaks have shaved off mainly due to the reduction of NOx-VOC emissions, baseline ozone levels are increasing caused by the increasing role of $\mathrm{CH}_{4}$.
- Considerable impacts of $\mathrm{CH}_{4}$ induced $\mathrm{O}_{3}$ concentrations on health and crop production in low ambition scenarios
- Global Methane Pledge and the EU methane Strategy are key initiatives to abate CH4 emissions.
- HTAP modelling exercise important to constrain uncertainties and move forward in understanding the impacts of $\mathrm{CH}_{4}$ emissions.


## Thank you and keep in touch


© European Union 2024

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

This presentation has been prepared for internal purposes. The information and views expressed in it do not necessarily reflect an official position of the European Commission or of the European Union.

## EU Science Hub

joint-research-centre.ec.europa.eu
(1) @EU_ScienceHub
(f) EU Science Hub - Joint Research Centre
in EU Science, Research and Innovation
(1) EU Science Hub
(0) @eu_science
@EU_ScienceHub
f EU Science Hub - Joint Research Centre
in EU Science, Research and Innovation
(0) EU Science Hub
@eu_science

