

Update ozone critical levels for vegetation and other ICP Vegetation* activities

Harry Harmens, Gina Mills, Felicity Hayes, Katrina Sharps (CEH Bangor, UK)

* Supported by Defra (UK), NERC (UK) & UNECE

Ozone critical levels (CLs) for vegetation

Workshops:

- 23 25 Nov 2015: Critical Levels Methodology Workshops, Hindås, Sweden*
- 7 9 June 2016: Workshop on deriving dose-response functions, Deganwy, UK (with financial support from Switzerland*)
- 7 9 November 2016: UNECE Ozone Critical Levels Workshop, Madrid, Spain* Background document presented with methodology, response functions, proposed critical levels (CLs) and new developments

- 30th ICP Vegetation Task Force meeting, 14-17 February, 2017, Poznan, Poland:
 - Adoption 21 ozone flux-based CLs
 - No changes ozone concentration-based CLs
 - No changes CLs for SO_2 , NO_x , NH_3

* Thank you for contribution in kind!

Flux-based ozone CLs

Two types of Phytotoxic Ozone Dose (POD_Y) defined:

POD_ySPEC: plant species (group)-specific, requires more input data, suitable for detailed risk assessment.

□ **POD_YIAM:** vegetation-type specific, requires less input data, suitable for large-scale modelling, including IAM.

21 flux-based CLs defined

Chapter 3 Modelling and Mapping Manual:

- □ Contains main methodology, flux-effect relationships and CLs
- ☐ Revision every 3 5 year (depending on new developments)

Two scientific background documents, annual update after Task Force meeting:

- A. Supplementary information for Chapter 3
- B. Developing areas and new directions of research

Species-specific flux-based CLs (POD_ySPEC)

Species (group)	Effect parameter	Potential effect at CL (% reduction)	Critical level (mmol m ⁻² PLA)	Potential max. rate of reduction (%) per unit POD _y SPEC		
Crops (POD ₆ SPEC)						
Wheat	Grain yield	5%	1.3	3.85		
	1000-grain weight	5%	1.5	3.35		
	Protein yield	5%	2.0	2.54		
Potato	Tuber yield	5%	3.8	1.34		
Tomato	Fruit yield	5%	2.0	2.53		
	Fruit quality	5%	3.8	1.30		
Forest trees (POD ₁ SPEC)						
Beech and birch	Whole tree biomass	4%	5.2	0.93		
Norway spruce	Whole tree biomass	2%	9.2	0.22		
Med. deciduous oaks	Whole tree biomass	4%	14.0	0.32		
	Root biomass	4%	10.3	0.45		
Med. evergreen	Above-ground biomass	4%	47.3	0.09		
(Semi-)natural vegetation (POD ₁ SPEC)						
Temperate perennial grassland	Above- ground biomass	10%	10.2	0.99		
	Total biomass	10%	16.2	0.62		
	Flower number	10%	6.6	1.54		
Med. annual pasture	Above- ground biomass	10%	16.9	0.85		
	Flower/ seed biomass	10%	10.8	1.61		

Vegetation type-specific flux-based CLs (POD_yIAM)

Vegetation type (POD _v IAM)	Effect parameter	Use to assess risk of reduction in	Potential effect at CL (% reduction)	Critical level (mmol m ⁻² PLA)		
Crops (POD ₃ IAM)	Grain yield	Grain yield	5%	7.9		
Forest trees	Total biomass	Annual growth	4%	5.7	Non-Med.	
(POD ₁ IAM)		of living biomass of trees	4%	13.7	Med.	
(Semi-)natural vegetation (POD ₁ IAM)						
Temperate perennial grasslands	Flower number	Vitality of species-rich	10%	6.6	Non-Med.	
Med. annual pastures	Flower/ seed biomass	grasslands	10%	10.8	Med.	

□ Indicative risk assessment of impacts on the most ozone-sensitive vegetation

Indicative economic assessment for crops, not for trees or (semi-)natural vegetation

Ozone flux-based global assessment

Mills et al. Submitted to PNAS (Proceedings of the National Academy of Sciences)

Global economic losses due to ozone effects on wheat yield (9.4% loss) are estimated at \$24.3 billion

Data averaged for 2010, 2011, 2012, weighted per grid square by proportion irrigated (based on production).

Potential global risk ozone on biodiversity (1)

Fuhrer et al. (2016). Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecology and Evolution 6: 8785-8799 (concentration-based)

POD3IAM, Mean 2010-12 0 - 10 10 - 20 20 - 30 30 - 40 40 - 60 > 60

*Provisional results

Plant species richness (Kier et al., 2005. J. Biogeogr. 32: 1107-1116)

Ozone stomatal flux (POD₃IAM for crops, mean 2010-2012)

Potential global risk ozone on biodiversity (2)

		POD₃IAM (Mean 2010-2012)					
Species richness		0 to 10	11 to 20	21 to 30	31 to 40	41 to 60	>60
	Score	1	2	3	4	5	6
<=500	1	1	2	3	4	5	6
501-1000	2	2	4	6	8	10	12
1001-2000	3	3	6	9	12	15	18
2001-3000	4	4	8	12	16	20	24
3001-5000	5	5	10	15	20	25	30
5001-10000	6	6	12	18	24	30	36

*Provisional results

		Combined
Green	Low	1 to 9
Orange	Medium	10 to 18
Red	High	19 to 27
Black	Very high	28 to 36

Note: Ozone-sensitivity tested of less than 1% of plant species

Revised NECD (Directive (EU) 2016/2284)

http://ec.europa.eu/environment/air/pollutants/ceilings.htm

Article 9 – Monitoring air pollution impacts: monitoring negative impacts on ecosystems based on representative network of sites, taking a cost-effective and risk-based approach (if appropriate, collaborate with ICPs of CLRTAP)

□ Annex V – Optional indictors, including:

 O₃: Vegetation growth and foliar damage Exceedance flux-based critical levels

Monitoring 1996-2006: Foliar injury and growth white clover up to 12 Member States. *Evidence for flux-based critical level approach.*

2016: Only UK and Poland

46th session TFIAM, 2-3 May 2017, Paris

Monitoring, smart-phone App & literature data

Revised NECD (Directive (EU) 2016/2284) (cont.)

Annex V – Optional indictors, including:

• N: Nutrient balance in foliage

15 Member States in 2005, 13 in 2010, 11 in 2015

3 – 4 April: meeting in Brussels – How can European Commission help Member States with implementation of NECD? (input provided by monitoring ICPs)

European Commission priorities for reinforcement:

- Increase participation in/cooperation with relevant networks (e.g. ICPs)
- Reinforce density of monitoring networks ecosystem representativity
- Reinforce integration of monitoring networks (e.g. ICP IM)
- Maintain the funding of the ICPs and the CCE

Outreach – TOAR and CCAC

Tropospheric Ozone Assessment Report (TOAR)

Deliverables:

- 1) First TOAR based on the peer-reviewed literature and new analyses
- 2) Database containing O_3 exposure and dose metrics at thousands of measurement sites around world, freely accessible for research on global-scale impact of O_3 on climate, human health and crop/ecosystem productivity (Gina Mills lead on ozone metrics for vegetation impacts)

April-June 2017: Submit assessment papers to *Elementa (online journal)*

mid- to late 2017: Publication of the papers and release of the data the

 Climate and Clean Air Coalition (CCAC): ICP Vegetation participated in expert workshop on 'Metrics for evaluating and reporting on methane and BC interventions', 16-17 March, Ottawa, Canada

TOAR members

220+ scientists from 36 nations, representing research on all 7 continents

Participation moss survey 2015/16

HM: 36-38 (25); N: 13 (15); POPs: 8 (6) - In brackets: 2010/11 survey

Rest of Europe (16)	Rest Europe	SEE Europe (8)	EECCA (9)	Others (3-5)
Austria ^{N,POPs}	Italy-Bolzano ^N	Albania	Armenia	Canada ^{N,POPs}
Czech Rep. ^N	Latvia ^{N,POPs}	Bulgaria	Azerbaijan	India (?)
Denmark-Faroer Isl.	NorwayPOPs	Greece	Belarus	Mongolia
Estonia ^N	Poland ^N	Macedonia	Georgia	South Korea (?)
France ^N	Slovakia	Romania	Kazakhstan	Vietnam
Germany ^{N,POPs}	Spain	Serbia	Moldova	
Iceland	Sweden ^{N,POPs}	Slovenia ^N	Russian Fed.	
Ireland ^{N,POPs}	Switzerland ^{N,POPs}	Turkey	Tajikistan	
			Ukraine	

Blue: data submitted; ^N = also nitrogen data; ^{POPs} = also POPs data; Black: data expected

Launch final report at 8th BioMAP¹ workshop in Dubna, July 2018 ¹Biomonitoring of Air Pollutants, with emphasis on trace elements

Medium-term workplan

2017:

- Workshop on ozone risk assessment methodology for developing countries (autumn)
- Update App to record ozone-induced visible leaf injury (with latest technology)

2018:

- Establish networks of participants in developing regions
- Collaboration with EMEP on improving and validating soil moisture index in model
- Report on current available evidence of ozone impacts on crops in developing regions
- Report on outcome of moss survey 2015/16

2019:

- Ozone risk maps for HTAP regions and scenarios
- Flux maps adapted for soil moisture limited areas (collaboration with EMEP/MSC-West)
- Report on networking activities, including first season field evidence ozone impacts
- Revised moss monitoring manual 2020

2020:

• Report on ozone impacts in developing regions (risk assessment, evidence, policy)

Annual updates: SBDs Mapping Manual, ozone risk maps for LRTAP Convention, preparations 2020 moss survey, report on new scientific developments, contribution to common workplan items WGE/EMEP

http://icpvegetation.ceh.ac.uk

30th ICP Vegetation Task Force meeting, 14 – 17 February 2017, Poznan, Poland

- 88 participants from 24 countries (including Armenia, Belarus, Georgia, Russian Federation)
- 31st ICP Vegetation Task Force meeting, 5 8 March 2018, Dessau-Roßlau, Germany

Thank you!

