AIR POLLUTION EMISSION AND POPULATION EXPOSURE ASSESSMENT OF THE UPDATE OF THE FINNISH ENERGY AND CLIMATE STRATEGY

Niko Karvosenoja, <u>Mikko Savolahti</u>, Kaarle Kupiainen, Ville-Veikko Paunu Finnish Environment Institute (SYKE)

Contents of the presentation

- Background on the Finnish Energy and Climate Strategy update
- Environmental Impact Assessment of the Strategy
 - Background
 - Air pollution emissions
 - Population exposure to primary PM2.5
- Conclusions

Update of the Finnish Energy and Climate Strategy

- Update of the 2008 Climate Strategy to integrate the impacts of
 - Economic recession
 - Industrial factory closings in Finland
 - Latest outlook on bioenergy potential in Finland
 - Extension to 2030 (However, the EIA at the moment only for 2020)
- Two scenarios
 - Baseline to fulfill agreed EU targets:
 - Generally 20/20/20
 - More specifically for Finland: renewables target 38 %, non-ETS emissions -16%
 - With-Additional-Measures (WAM) to additionally include measures to reach the non-ETS sector goal (-16%) and better anticipate 80% reduction by 2050 (differs very little from Baseline in 2020)
 - Traffic mode changes and "eco-driving"
 - Stricter building energy regulation

Update of the Finnish Energy and Climate Strategy

Update of the Finnish Energy and Climate Strategy

EIA of the Energy and Climate Strategy

- Impacts of the Strategy on
 - Human health and welfare
 - Environment: soil, waters, air, flora, fauna, biodiversity
 - Urban structure, built environment, cultural heritage
 - Use of natural resources
 - Interactions between the above-mentioned
- Quantitative and qualitative assessments
- Most emphasis on:
 - Impacts on carbon sinks, e.g. carbon budgets of forest soils
 - Impacts on biodiversity
 - Life-cycle Impact Assessment (LCIA)
 - Air pollution emissions and population exposure

Finnish Regional Emission Scenario (FRES) model

Integrating policy analysis tool in the core of the Finnish Integrated Assessment Modeling (IAM) framework

Finnish Regional Emission Scenario (FRES) model

www.environment.fi/syke/pm-modeling

Anthropogenic emissions 1990, 2000, 2005, 2010, 2020, 2030, 2050 (several projections)

Comprehensive and congruent calculation for primary PM and gases
•primary PM (TSP, PM_{10 - 2.5 - 1 - 0.1}, chemical composition, incl. BC/OC/sulfates)
•SO₂, NO_x, NH₃, NMVOCs
•GHGs

- Abatement technologies and costs
- Aggregation: 154 sectors, 15 fuels (GAINS compatible)
- Large point sources (>200), small point sources (> 200), area emissions (1 × 1km²)
- Several emission heights
- Dispersion with s-r matrices (10 × 10km² and 1 × 1km²)
- LRT from EMEP
- Databases of population and critical loads

30.4.2013

Air pollution emissions and pop. exposure

Emissions of

- SO₂
- NOx
- Black carbon (BC)
- Primary PM2.5

Population exposure of primary PM2.5

Air pollution emissions, SO2 (ktons/a)

Emissions decrease from 2010 due to

- Lesser use of peat, oil and coal
- IE directive

Very little difference between Baseline and WAM

SYKE

Air pollution emissions, NOx (ktons/a)

Emissions decrease from 2010 due to

- Traffic car fleet renewal
- Lesser use of peat, oil and coal
- IE directive

Very little difference between Baseline and WAM

SYKE

Air pollution emissions, PM2.5 (ktons/a)

Emissions decrease from 2010 due to

- Traffic car fleet renewal
- Wood stove stock renewal
- IE directive (+ national legislation) to energy plants < 50 MW

Slight decrease from Baseline to WAM

- Less traffic fuel consumption due to measures on traffic mode changes and "eco-driving"
- Less house heating need due to stricter building regulation

Air pollution emissions, BC (ktons/a)

Emissions decrease from 2010 due to

- Traffic car fleet renewal
- Wood stove stock renewal

Slight decrease from Baseline to WAM

- Less traffic fuel consumption due to measures on traffic mode changes and "eco-driving"
- Less house heating need due to stricter building regulation

SYKE

Primary PM dispersion in FRES

- 1. Long-range transport impacts with EMEP 50 km resolution Not used in this
- 2. Finnish high-stack PM emissions with 10 km resolution
- 3. Finnish near-ground PM emissions with 1 km resolution
 - 1. EMEP source-receptor matrices (SRM) 50 x 50 km

2. Lagrangian SILAM based SRM 10 x 10 km 3. Gaussian UDM-FMI based SRM 1 x 1 km

Primary PM2.5 concentrations

Primary PM2.5 SRMs at 1 x 1 km resolution were applied to Finnish near ground emissions

Modelled primary PM2.5 concentrations in 2020 Baseline (ng/m3)

Road traffic

Machinery

Residential wood combustion

Primary PM2.5 concentrations

Primary PM2.5 SRMs at 10 x 10 km resolution were applied to Finnish high stack emissions

Modelled primary PM2.5 concentrations in 2020 Baseline (ng/m3)

Energy production, industry and processes

Population exposure to primary PM2.5 (µg/m3)

Population exposure decrease from 2010 due to

- Traffic car fleet renewal
- Wood stove stock renewal

Slight decrease from Baseline to WAM

- Less traffic fuel consumption due to measures on traffic mode changes and "eco-driving"
- Less house heating need due to stricter building regulation

Conclusions

The strategy scenarios rather conservative and industry driven. Challenging to get to a -80% pathway by 2050

Air pollution study demonstrates decrease in emissions and population exposure from 2010 to 2020 thanks to emission legislation and cleaner fuels

Baseline - WAM scenario comparison demonstrates positive impacts of traffic- and residential-related NTMs (e.g. traffic mode changes, "eco-driving", stricter building efficiency regulations) on the emissions and population exposure to PM2.5 and BC

Potential trade-offs from residential wood heating

Increased population exposure and negative health impacts from urban emissions

Increased climate impacts from winter-time BC emissions (especially through snow albedo effects)

Thank You

www.environment.fi/syke/pm-modeling

This work was supported by projects

"Mitigation of Arctic warming by controlling European black carbon emissions (MACEB)" and "Climate change, air quality and housing - future challenges to public health (CLAIH)"

funded by LIFE+ 09 Environment Policy and Governance and the Academy of Finland

