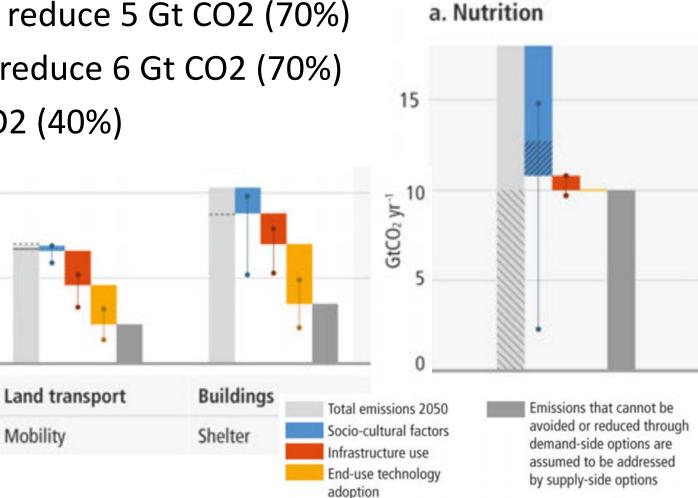
Draft guidance document on behavioral & structural measures

First draft - TFIAM 15-17 April 2024

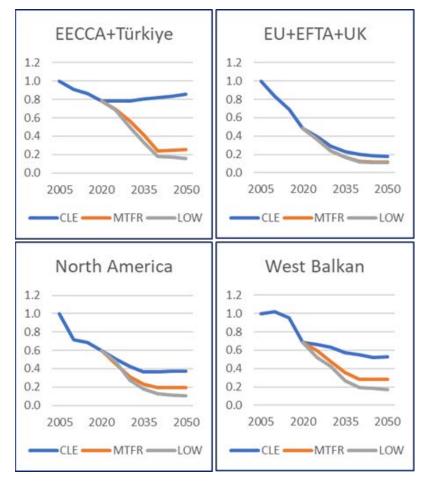
Outline

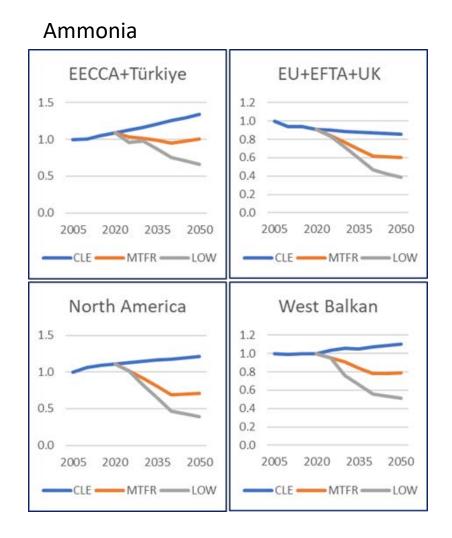
- 1. Introduction (focus is on residential heating, mobility and food)
- 2. Why do we need structural and behavioral measures?
 - Definition: "additional voluntary, innovative or non-regulatory measures (measures that are not included in the technical annexes of the Gothenburg protocol)"
- 3. Policy instruments
 - regulation economic instruments social instruments public investments
- 4. Inventory of effective measures
 - Energy use/heating transport food
- 5. Scope and benefits
 - GAINS: Energy transition, LOW-scenario (food), Local transport
- 6. Conclusions


Examples of policy instruments to encourage behavioral and structural measures

- 1. <u>Regulatory instruments</u>: low-emission zones; permits for new roads or traffic intensive services
- 2. <u>Economic instruments</u>: subsidies for clean alternatives (food, vehicles, wood stoves); charges for polluting vehicles, fuels (and meat), compensation for the early scrapping of cars or stoves; increased parking fees in cities
- 3. <u>Social instruments</u>: raising awareness, public involvement in monitoring and city transport planning, communication strategies to gain societal support for the use of one of the other policy instruments and adapt social norms that in turn influence individual behavior
- 4. <u>Public investments</u>: investments in public transport, removal of parking spaces and the replacement of car lanes by bus or cycle lanes aimed at modal change and reduction of car traffic intensity. Investments in electric vehicle (EV) infrastructure and green electricity; replacement of government motor vehicle fleets with EVs
- + remove subsidies that stimulate fossil fuel use, car traffic, intensive farming

Great expectations


- Modal shifts, active mobility could reduce 5 Gt CO2 (70%)
- Domestic heating measures could reduce 6 Gt CO2 (70%)
- Dietary shifts could reduce 8 Gt CO2 (40%)


Source IPCC –WGIII (2022)

What can we learn from GAINS-scenarios?

Nitrogen oxides

Hot issues

- Is wood-burning a human right? How to enforce "burning the right way"
- Who has the power to change the food system?
- Can we live with less flying?
- How to avoid yellow jackets?
- Who is being compensated for the costs of the energy transition?

Transport policies – there no silver bullet

	Public support	Health benefits
logistical programs for goods transport		+
national speed limits	-	+
increase of fuel duties		++
(local or national) road pricing	/	+++
Higher parking fees / fewer parking places	-	+
investments in public transport	+	+
agreements with cities on low-emission zones	-	(++)
enhanced inspection and maintenance schemes	+	+
scrapping schemes	+	++
EV infrastructure and incentives for EV sales	++	+++
public awareness health benefits walking and cycling	+	+
Traffic circulation schemes	-	0/-

Public support differs among countries. Health benefits are linked to emission reductions. Success depends on the spatial scale and 'strength' of the measure.

Dietary change

It is more complex than you think!

Appetite for change

Directionality

Shared

Vision

Goals

Industry

Consumers

Retailers

Public

Institutions

Producers

Authorities

- Combining policy instruments to support more plant-based diets
- Strengthen governments' coordination and operational capacities
- Anticipatory capacity is essential for imagining a future food system

Coordination

Public

Education

Knowledge sharing

Transparency

Digitalization

FBDGs

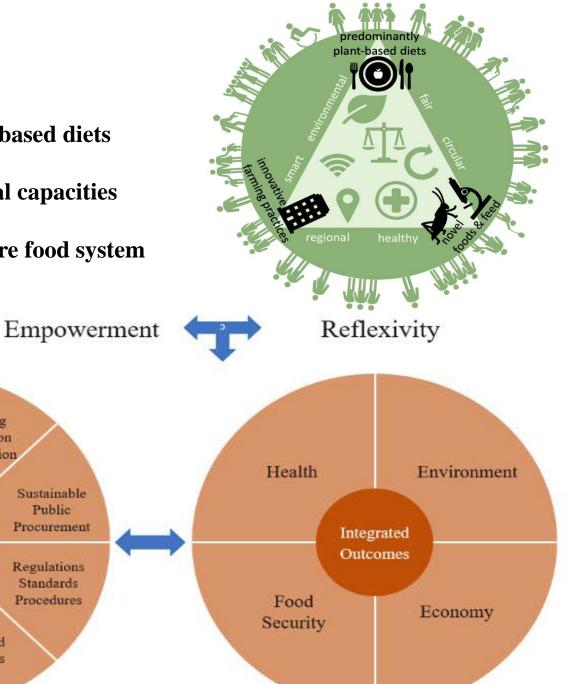
Sustainable

relationships

partnerships

Learning

Innovation


Capacitation

Taxes and

incentives

Integrated

Actions

What are benefits and costs of behavioral and structural measures?

Benefits:

- a) Higher emission reduction potential than with technical measures alone
- b) Lower costs of technical measures

Political limitations:

- a) They cannot easily be implemented via permitting of specific activities. They often require *more coordination* with other ministries, government layers, stakeholders and public.
- b) They often require a combination of *actions by various players* in the production chain, as well as by consumers.
- c) Non-monetary costs: longer traveling time, less comfortable indoor temperatures, loss of freedom to choose, loss of personal control, ..
- *d)* Less predictable: much depends on the actual preferences and power of stakeholders.
- e) In specific situations, pragmatic policy choices must be made acknowledging that *public acceptance* of policy instruments has limitations, that long-term goals cannot be realized at once, and that one should be satisfied with small steps in the right direction.

Scientific challenges to deal with "NTM's"

- 1. Translation of (variable) local experiences to UNECE domain
- 2. Monetization of costs and benefits and inclusion in optimization of "welfare" effects
 - a) Costs of enforcement
 - b) Some measures improve air quality and have additional direct health benefits (active mobility, healthy diets)
 - c) Costs of integrated transport-city planning is difficult to attribute
 - d) Taxing fuels and food will have cross-border impacts
- 3. Impacts on air quality and health are mainly based on ex ante model calculations; ex post evaluations are sparce

Conclusions

- 1. There is no silver bullet
- 2. Effective measures seem to encounter most political resistance
- 3. What works in one country doesn't have to work in other countries
- 4. However, it is important to exchange experiences and learn from each other

- Next version Guidance Document (Sept 2024)
- Final version to be approved by EB in December 2025

Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map (376 measures, based on over 9000 references)

> Infrastructu (n = 210)

Policy Category	Policy Intervention	Frequenc y Studied
Pricing: 11.8 % (n = 216)	1. Air pollution charging fees	24
	2. Congestion charging	28
	3. Fuel taxes or price increase	26
	4. Mileage-based user fees	4
	5. Parking charges	55
	6. Road pricing	51
	7. Pricing incentives	27
	8. Vehicle ownership taxes	1
Land-Use: 4.2 % (n = 77)	1. Development density and mixed developments	42
	2. Parking expansion	2
	3. Superblock development	2
	4. Transit-oriented development	18
	5. Urban sprawl	8
	6. Urban transport planning	5

Haneen Khreis et al, Env Int Feb2023

ure: 11.5 %	1. Active transportation infrastructure	26
	2. Bus rapid transit or mass rapid transit	43
	3. Greenspace or blue space	2
	4. Park and ride	9
	5. Public transportation infrastructure	33
	6. Roadway development	23
	7. Solid roadside barrier	8
	8. Speed bump development	18
	9. Street ventilation	3
	10. Unconventional intersection or intersection alteration	22
	11. Vegetative roadside barrier, surface, or roof	23

https://doi.org/10.1016/j.envint.2023.107805

Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map – ctd

Management, Stand 44.1 % (n = 807)

Behavioral: 6.3 % (n = 116)	1. Active or non-motorized transport (i.e., bike or walk) promotion or shift	31
	2. Flexible work arrangements	26
	3. Public transit promotion or shift	47
	4. Ride sharing promotion or shift	12
Technology: 22.2 % (n = 406)	1. Alternative fuel technology	271
	2. Alternative vehicle technology	12
	3. Electronic toll technology	3
	4. Material coating	6
	5. Real-time passenger information	2
	6. Speed control technology	5
	7. Stop/Start technology	2
	8. Vehicle retrofitting	105

dards, and Services:	1. Fleet management	59			
	2. Fuel regulation or restriction	35			
	3. High occupancy vehicle lane				
	4. Inspection and maintenance program	18			
	5. Intelligent transport system	47			
	6. Low emission zone	56			
	7. Loading, unloading, and/or idling regulation	18			
	8. Parking standards, reduction, or regulation	16			
	9. Public transportation expansion	47			
	10. Public transportation regulation	31			
	11. Speed limit regulation or reduction	42			
	12. Street cleaning	4			
	13. Studded tire regulation	1			
	14. Traffic signal optimization	29			
	15. Vehicle or manufacturing alteration	4			
	16. Vehicle emission regulation	134			
	17. Vehicle purchase restriction	7			
	18. Vehicle rerouting or route optimization	18			
	19. Vehicle retirement or replacement	112			
	20. Vehicle shift	2			
	21. Vehicle use restriction	114			

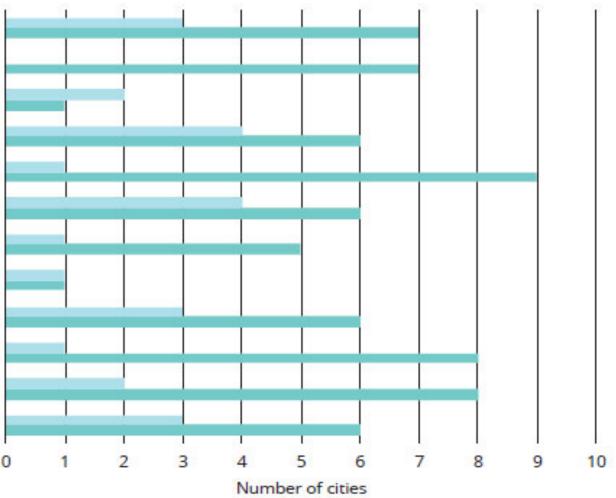
NTM overview Italy (Ilaria D' Elia & Antonio Piersanti)

	Succesful examples	summary	Effective zone (country/area)	Air pollution reduction	Health effects	Costs	reference
	Speed limit highway	reduction of speed limit from 130 km/h to 100 km/h	Italy	Year 2030: reduction of 11.5% of Nox emissions respect to the 2030 baseline. Smaller reduction for PM10 (<2%)	available but not per single measure	not estimated	D'Elia et al., 2018, https://www.sciencedirect.com/science/article/abs/pii/S1309104217306529
	Low emission zones		several Italian regions	5% OF NUX EMISSION REQUCTIONS	available but not per single measure	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
	road traffic restriction	Limitation to vehicle circultation of older Euro vehicles	several Italian regions	10% of NOx emission reductions and 5% of PM10 emissions	available but not per single measure	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
Transport	New heavy duty vehicles	Incentives for the substitutions of heavy duty vehicles	several Italian regions	31.4% of NOx emissions	available but not per single measure	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
	Renew fleet for freight vehicles	Promote the use of methane/liquefied natural gas (LNG)–powered heavy duty trucks. Promote the use of LNG in maritime transport	Italy		available but not per single measure	available but not per single measure as benefits obtained applying a set of measures	Piersanti et al., 2021, https://www.mdpi.com/2073-4433/12/2/196
	Public transport renewal	Incentives for bus substitution, frequency increase, etc	several Italian regions		available but not per single measure	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
	Promotion of photovoltaic integrated in domestic buildings	incentives to install photovoltaic systems in houses	Italy	negligible emission reductions	not estimated	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
Energy	Regulation of residential biomass, oil and coal use	ban of these type of fuel	Italy		available but not per single measure	not estimated	D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
	Efficiency improvements in fireplaces and stoves	Renewal of old biomass heating systems with efficient and low–emission technologies	Italy		available but not per single measure		Piersanti et al., 2021, https://www.mdpi.com/2073-4433/12/2/196; D'Elia et al., 2009, https://www.sciencedirect.com/science/article/pii/S1352231009007675
	Lower nitrogen feeding diet for bovines	10% of lower nitroge feeding diet for bovins (not regulated by EU Directive)	Italy		available but not per single measure	not estimated	D'Elia et al., 2018, https://www.sciencedirect.com/science/article/abs/pii/S1309104217306529
Agriculture	More efficient use of nitrogen fertilizers	Reduction of 50% of nitrogen application in fertilization with an efficiency of 50%	Italy		available but not per single measure	not estimated	D'Elia et al., 2018, https://www.sciencedirect.com/science/article/abs/pii/S1309104217306529
	Incorportate fertilizers	Incorporate urea-based fertilizers	Italy		available but not per single measure	available but not per single measure as benefits obtained applying a set of measures	Piersanti et al., 2021, https://www.mdpi.com/2073-4433/12/2/196

More Examples (available on Sharepoint)

NTM example	Summary	Effective Zone	Air pollution reduction	Health effects	Costs	Reference
Fat tax	Tax on saturated fat from milk products and meat as part of the Danisch "spring package"(=lower taxes on work and increase taxes on goods with detrimental effect on environment, climate and health) Okt 2011-Jan 2013.		5	4% less saturated fatt intake. Modelled health effect: 123 averted deaths per year.	sector and 14 milion extra for cross-border trade. (reason for	The effects of the Danish saturated fat tax on food and nutrient intake and modelled health outcomes: an econometric and comparative risk assessment evaluation 1 European Journal of Clinical Nutrition (nature.com) 2021- 5063 Final.
speed limit polluted roads trail- >went to permanent	"the speed limit on five polluted roads, along a total length of 8.5km, was lowered from 50km per hour to 30km per hour."		"reduction of 2-4µg/m ³ in annual average concentrations of both NO2 and coarse particulate matter (PM10)" (and noise reduction by 2 decibel)		pilot cost 850000 euro.+ 620000 for the more busses needed to maintain service level.	<u>Traffic management in Berlin,</u> <u>Germany — European</u> <u>Environment Agency (europa.eu)</u>
London congestion tax	tax of 5 pound (july 2005 8 pound) introduced from Feb 2003. These are results after 4 years But more reason findings say 15 pounds		NOx redcution of 13%, PM10 15% for 2005. But in 2019 CO 60%, NO2 24%, SO2 61% reductions.		net revenues of 112M pound	Has the London Congestion Charge Zone Improved Air Quality? (selectcarleasing.co.uk) London congestion tax FourthAnnualReportFinal.pdf
Superblock model	modelling of superblock in the city of Barcelona (and potential upscaling)		attributed to reductions in NO2 (291, 95% PI: 0–838), followed by noise (163, 95% CI: 83–246), heat (117, 95% CI: 101– 137), and green space development (60, 95% CI: 0– 119). Increased PA for an estimated 65,000 persons shifting car/motorcycle trips to public and active transport resulted in 36 preventable deaths	Superblocks were estimated to result in an average increase in life expectancy for the Barcelona adult population of almost 200 days (95% CI: 99–297), and result in an annual economic		<u>Changing the urban design of</u> <u>cities for health: The superblock</u> <u>model - ScienceDirect</u>

Ranking (Joaquin study 2016)


NAME
Low Emmision Zone (LEZ)
Traffic Restriction
Traffic Signal Coordination
Public Transport
Electric Vehicles (EV)
Congestion Charge Scheme (CCS)
Carpooling
Car Sharing
Active Transport
Speed Limit Reduction
Fuel Taxation
Noise Barriers
Fleet Renewal
Parking Management
Urban Planning
<u>Urban Parks</u>
Traffic Reallocation
Green Barriers
Engine Idling Reduction
Street Cleaning
Street Vegetation
Air Purifing Building Materials

EEA inventory ______ Dogan Ozturk_ Urban Air quality in Europe, 2019

Energy-efficient buildings with insulation, renewable energy sources Relocation of factories/industrial sites out of urban areas Measures to reduce diffusive dust emissions in ports Substitution of old, dirty stoves and boilers with clean models District heating Fuel conversion in domestic heating Ban on coal for household heating/cooking Low-S fuels for shipping fuels in port area Electric buses, trams, Euro VI or retrofitted buses Reduced speed limits/Congestion charges Promotion of cycling Low Emission Zone

Mitigation measures in the cities

Planned

Implemented