

Global present and future nitrogen abatement potential and its impact on air quality and health

Rita Van Dingenen TFIAM 51 07-APR-2022

Joint Research Centre

Outline

- 1. Present day analysis of nitrogen share in PM2.5
- Specific SSP scenarios for NH₃ abatement (work in progress for International Nitrogen Assessment) – implications for air quality
- 3. Other Nr-relevant ongoing work

Paper: Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution (Gu et al., Science 2021)

https://www.science.org/doi/10.1126/science.abf8623

Scope:

- How much do present-day Nr emissions (NO_x, NH₃) contribute to PM2.5 in a global perspective?
- What is the health impact attributable to Nr emissions? (Years of Life Lost, YLL)
- What is the welfare (marginal) cost per kg emitted NOx, NH3? What is abatement (marginal) cost?
- \rightarrow Benefit/Cost evaluation for NO_x and NH₃ abatement

Methods

Emissions:

- CEDS 1990, 2013
 - with/without NO_x & NH₃ emissions

Chemistry-Transport Models:

- EMEP-WRF
- GEOS-Chem
- TM5-FASST
 - \rightarrow Share of Nr emissions in PM2.5

Health impact of Nr (YLL):

• Nr-share(PM2.5) x YLL(PM2.5)_{GBD2013}

Welfare loss (World Bank – IHME, 2016):

•
$$cost_{c,n} = VOLY_{c,n} \times YLL_{c,n}$$

• VOLY_{c,n} = VOLY_{EU} ×
$$\left(\frac{Y_{c,n}}{Y_{EU}}\right)^{e}$$
 Y = GDP/capita

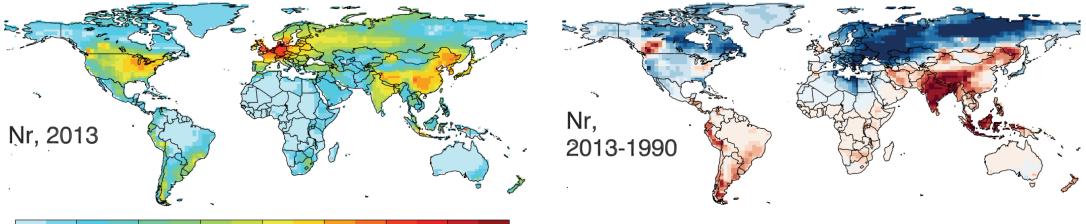
Abatement costs:

GAINS database

Nr share in PM2.5 formation

Nr_SHARE =
$$\left(\frac{PM2.5_{all\ emissions} - PM2.5_{emissions\ minus\ NOx,NH3}}{PM2.5_{all\ emissions}}\right)$$

With applied emission reduction fraction (100%, 50%, 20%) \rightarrow evaluate non-linearities


Note:

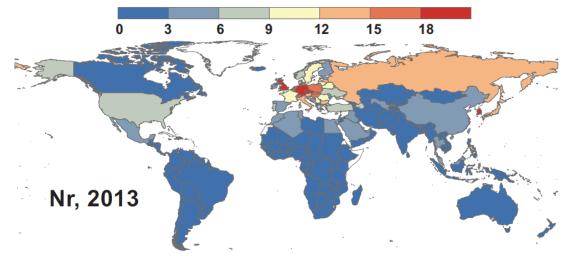
Nr_SHARE > fraction of (ammonium + nitrate) in PM2.5

due to feedbacks of NO₂ on OH and oxidation rate of SO₂, NO₂

Nr SHARE in PM2.5 formation (100% reduction)

0	10	20	30	40	50	60	70	80	[%]

Nr shares in PM2.5 formation (%)					
	1990	2013			
Africa	5.9	7.3			
Asia	31.0	42.3			
Europe	57.9	47.4			
Latin America	20.9	23.5			
North America	46.3	44.2			
Oceania	7.8	11.2			
World	30.2	38.6			



Premature death & welfare cost (2013)

Health impact of Nr (YLL):

YLL_{Nr} = Nr_share(PM2.5) x YLL(PM2.5)_{GBD2013}

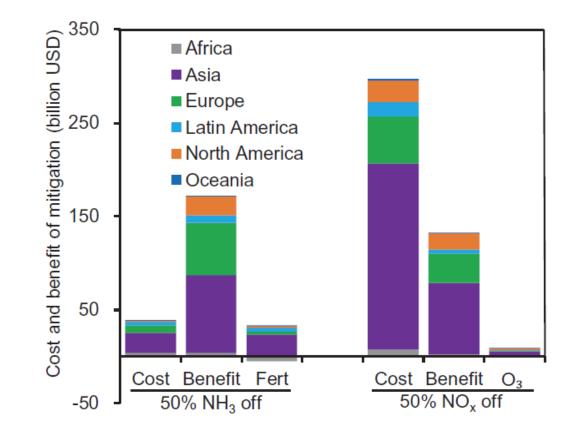
Mortality cost per kg Nr emission (USD/kgN)

Welfare loss (WB – IHME, 2016):

 $cost_{c,n} = VOLY_{c,n} \times YLL_{c,n}$

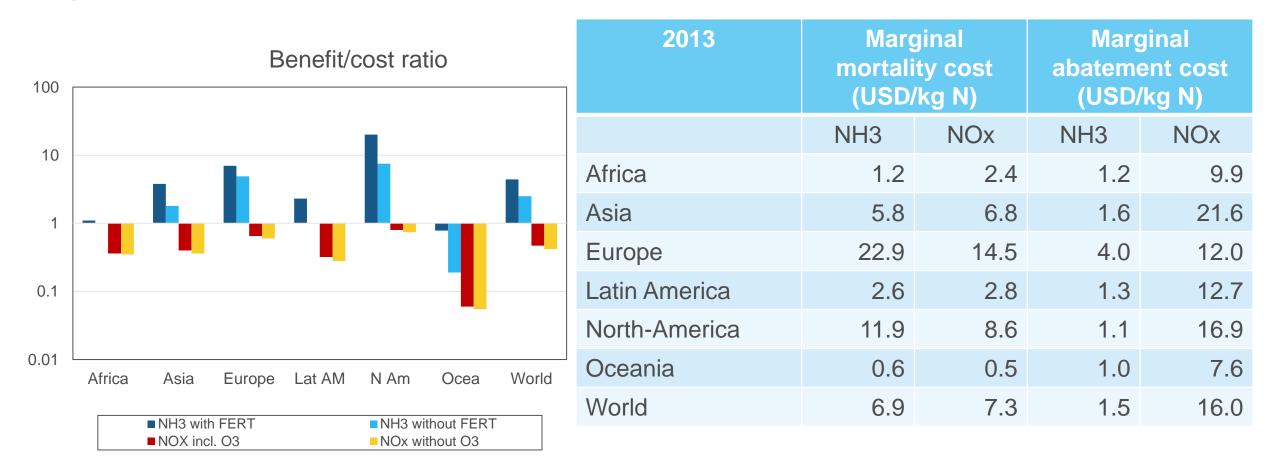
$$VSL_{c,n} = VOLY_{EU} \times \left(\frac{Y_{c,n}}{Y_{EU}}\right)^{e}$$

	ty cost of Nr in PM2.5 on (billion USD)	Marginal mortality cost (USD/kg N)		
	2013	2013		
Africa	9	1.1		
Asia	212	4.1		
Europe	125	(13.1)		
Lat. America	19	2.1		
N. America	54	6.8		
Oceania	0.6	0.5		
World	420	4.8		



Mitigation costs and benefits of 50% Nr emission reduction in 2013

- Based on 50% emission reduction model runs and associated Nr share
- Abatement cost of Nr emissions = [investment costs + operation costs] for implementation of measures, obtained from GAINS database
- NO_x reduction: most cost-effective measures already in place in highincome countries.
 - Benefits: PM2.5, O₃ health impacts (crop impacts not considered)
- NH₃ reduction: through improved agricultural management practices (IMPs)
 →reduce fertilizer use, manure recycling & management large reduction margin.
 - Benefits: PM2.5 health impact increased N use efficiency → more optimal fertilizer use (+/- 20% reduction)



Mitigation costs and benefits of 50% emission reduction in 2013

Mitigation costs and benefits of 50% emission reduction in 2013

Conclusions part 1

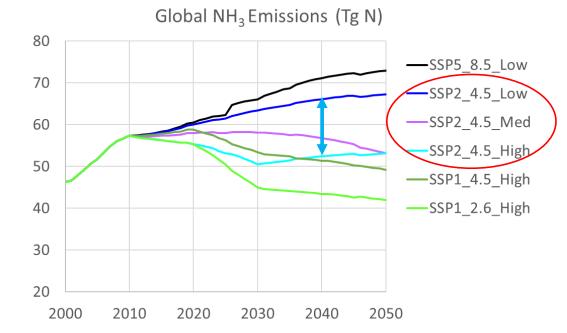
- Abating ammonia is in most world regions more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution
 - The global average cost of reducing 50% NH_3 emission = 1.5 USD/kg NH_3 -N associated welfare benefit = 6.9 (3.8 – 10.9) USD/kg NH_3 -N
 - The global average cost of reducing 50% NO_x emission = 16.0 USD/kg NO_x-N associated welfare benefit = 7.3 (4.0 11.8) USD/kg NO_x-N
- North America, Europe and Asia have the highest benefit/cost ratio for NH₃ mitigation
- Note: Welfare valuation based on equal toxicity for all PM2.5 components. Not all benefits taken into account (market, ecosystems,...)

Part 2: Future scenarios for NH₃: impacts on air quality

Scope:

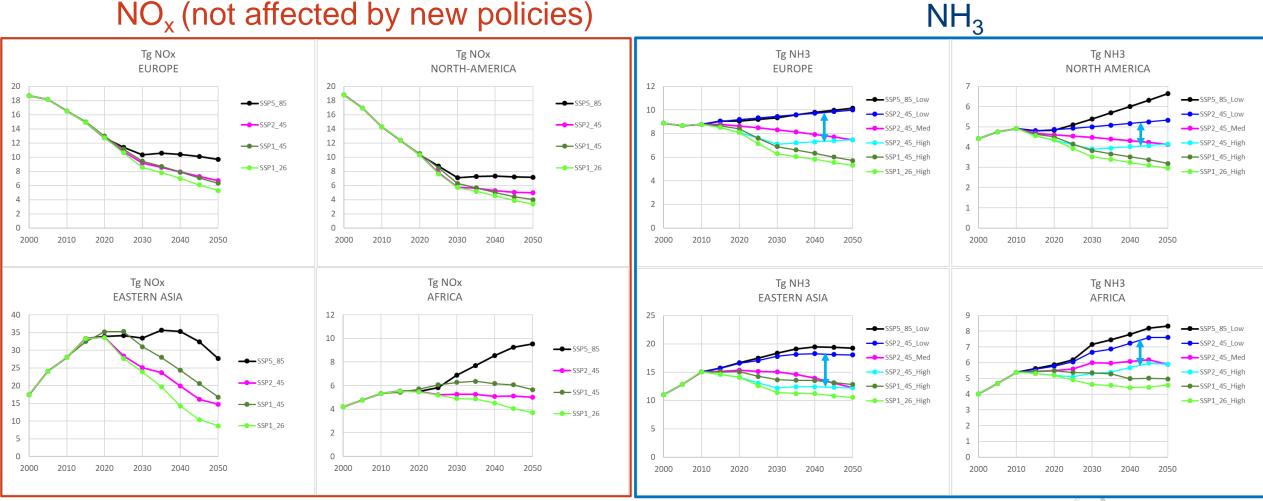
- New Nr narratives embedded in SSPs → N-relevant drivers (food, feed, consumption, waste,...) [Kanter et al., 2020: A framework for nitrogen futures in the shared socio-economic pathways, Global Env. Change]
- New Nr interventions across the food system (note: only NH_3 , not NO_x)
 - Crop & livestock NUE improvement
 - Manure recycling increase
 - Dietary change

- IMAGE \rightarrow pollutant emissions


- Food loss & waste reduction
- TM5-FASST analysis: impacts of NH₃ intervention policies on AQ and health (and deposition and short-lived climate forcers)

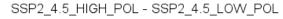
Part 2: IMAGE NH₃ trajectories within SSP-RCP narratives (INA)

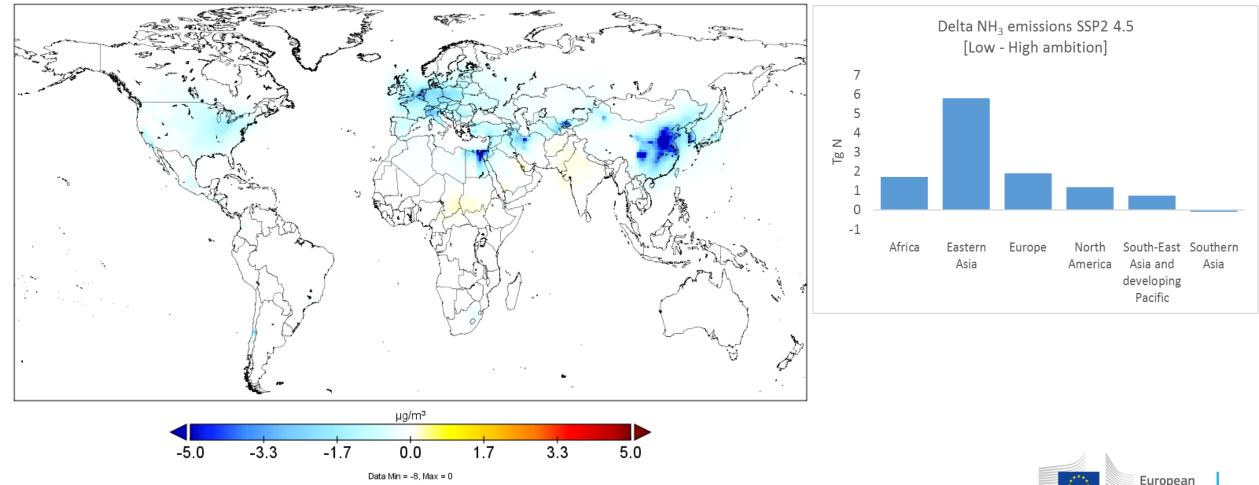
- Historical < 2010: EDGAR V4.3.2
- > 2010: EDGAR + IMAGE trends


SSP	RCP	NH3 policies
SSP1 (sustainability)	2.6	High ambition
	4.5	High ambition
SSP2 (middle of the road)	4.5	High ambition
	4.5	Moderate ambition
	4.5	Low ambition
SSP5 (fossil-fueled)	8.5	Low ambition

- **High ambition**: the frontier of technical feasibility in a timeframe largely consistent with the Sustainable Development Goals, which run until 2030 thereafter constant EF.
- Moderate ambition: reaches the same frontier over a longer time horizon (2050 or 2070)
- Low ambition: either no improvement or a continuation of current trends, which can be negative (e.g. decreasing NUE) = +/- original SSP emissions

Regional Nr emission trends


NO_x (not affected by new policies)



DELTA Impact (High – Low) NH₃ policy ambition under SSP2 4.5

Difference in anthropogenic PM2.5 yr2050

Commission

Abatement potential under SSP2-4.5 (High – Low ambition)

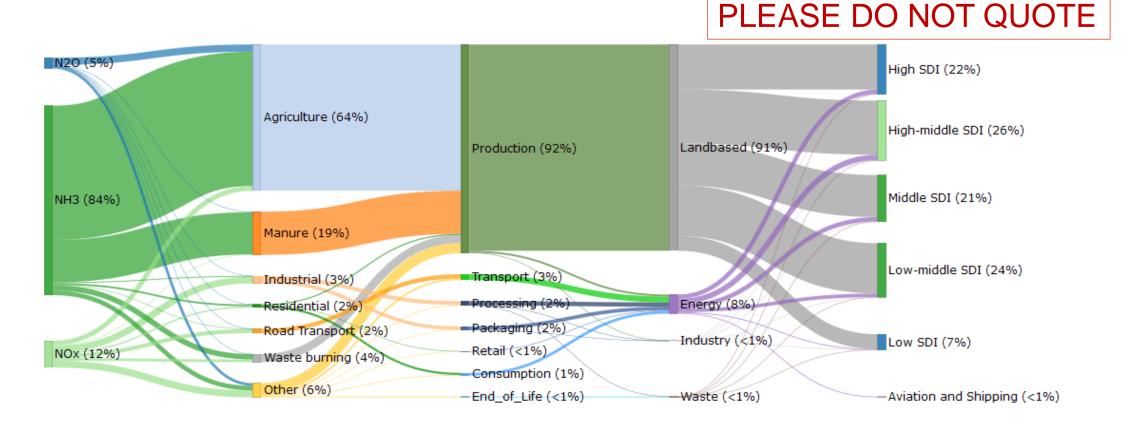
	Change in PM2.5 (SSP2_LOW – SSP2-HIGH)				
	2030		20	50	
	µg/m³	% reduction	µg/m	% reduction	
Europe	1.2	17%	1.3	20%	
Eurasia	0.6	14%	0.7	18%	
Asia-Pacific Developed	0.8	15%	0.7	18%	
Eastern Asia	2.9	10%	3.0	17%	
North America	0.7	14%	0.7	15%	
Middle East	0.7	8%	0.9	15%	
Africa	0.3	4%	0.3	7%	
Latin America and Caribbean	0.1	2%	0.2	3%	
South-East Asia and developing Pacific	0.1	1%	0.1	1%	
Southern Asia	-0.1	0%	-0.1	0%	

Fraction of population exposed to WHO PM2.5 targets

Conclusions part 2

Additional NH₃-policy dimension added to SSP scenario family (IAMs: IMAGE, GLOBIOM, MagPIE)

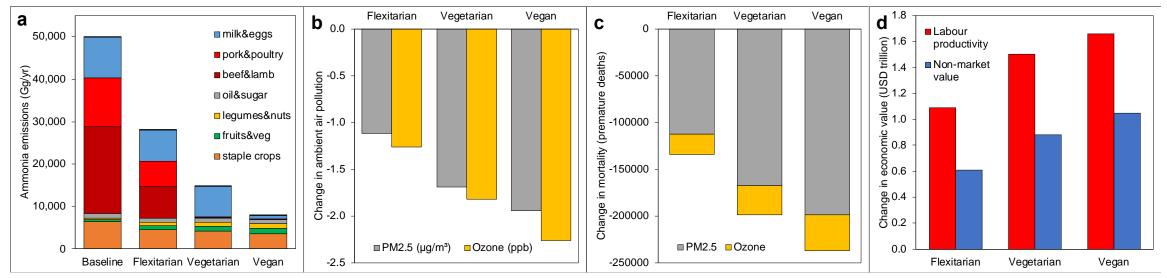
- TM5-FASST → associated pollutant levels and impacts for INA
 - PM2.5, O₃ concentrations and exposure metrics, N-share
 - N deposition
 - short-lived climate forcer metrics (CO2e)


 Ambitious NH₃ mitigation policies in the agricultural sector can significantly improve exposure to PM2.5 in Eastern Asia, Europe, N.
 America and contribute to WHO PM2.5 exposure guideline level, but other measures are needed to reach targets.

Part 3: Other ongoing N-related work:

- EDGAR-FOOD database: https://edgar.jrc.ec.europa.eu/edgar_food
- Application paper: Global environmental impacts from food system emissions

Crippa et al. (submitted to Nature Food)



Part 3: Other ongoing N-related work:

The global and regional air quality impacts of dietary change

Marco Springmann, Rita Van Dingenen, Toon Vandyck, Catharina Latka, Peter Witzke, Adrian Leip

(Submitted to Nature Communications)

Global impacts of dietary changes on agricultural emissions (a), air pollution (b), premature mortality (c), and economic output (d) in the year 2030.

Thank you

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Additional material

			N policy ambition levels		
Sector & country group		High	Medium	Low	Indicators
	OECD	Target NUE by 2030	Target NUE by 2050	Current NUE remains constant	Crop NUE (%)
Crop (Zhang et al., 2015)	Non-OECD/High N	Target NUE in 10 years after catch-up with OECD countries	Target NUE in 30 years after catch-up with OECD countries	NUE trends from past 10 years continue if negative until 2030, otherwise NUE remains constant	N surplus (kg N ha ⁻¹)
	Non-OECD/Low N	Target NUE in 30 years after catch-up by avoiding historical trajectory	NUE follows historical trajectory towards high N/low NUE over 30 years, before improving	Current decreasing NUE trends continue akin to countries with similar socioeconomic status	
7 : l	OECD	10% reduction by 2030, 30% reduction by 2050	10% reduction by 2050, 30% reduction by 2070	Current rates remain constant to 2050	N excretion per unit animal (kg N/LSU/yr)
Livestock manure excretion ^(UNEP, 2013)	Non-OECD/High N	N excretion rates same as OECD in 10 years after catch-up	N excretion rates same as OECD in 30 years after catch-up	Current trends continue if negative until 2030, otherwise remain constant	N excretion per unit animal
	Non-OECD/Low N	30% reduction for new livestock production after 2030	30% reduction for new livestock production after 2050	Current trends continue or remains constant	product (kg N/kg meat, milk, eggs)
	OECD	90% recycling by 2030	90% recycling by 2050	Current rates remain constant to 2050	Excreted manure collected,
Manure recycling ^(UNEP, 2013)	Non-OECD/High N	50% increase in recycling by 2030; 100% increase by 2050, or until 90% recycling reached	50% increase in recycling by 2050; 100% increase by 2070, or until 90% recycling reached	Current trends continue if negative until 2030, otherwise remain constant	properly stored and recycled (%)
	Non-OECD/Low N	90% recycling in new systems by 2030	90% recycling in new systems by 2050	Current trends continue or remain constant	
	OECD	70% of technically feasible measures by 2030, all measures by 2050	Current legislation (CLE) by 2030, 70% of technically feasible in 2050 increasing to all measures by 2100	CLE reached by 2040, further improvements slow	NO _x emissions (t N yr ⁻¹) NH ₃ emissions (t N yr ⁻¹)
Air Pollution ^{(Rao et al.,} 2017)	Non-OECD/High-Med income	Same as OECD in 10 years after catch-up	Delayed catch-up with OECD (CLE achieved by 2050), 70% of technical feasible reductions achieved by 2100	CLE reached by 2040, further improvements slow	
	Non-OECD/Low income	CLE by 2030, OECD CLE by 2050, gradual improvement towards 70% technical feasible measures	OECD CLE achieved by 2100	CLE reached 2050, further improvements negligible	
Wastewater ^{(van}	OECD	>99% wastewater treated; 100% N and P recycling from new installations from 2020	>95% wastewater treated 100% N and P recycling from new installations from 2030	>90% wastewater treated	Tertiary treatment rate (%) Secondary treatment rate (%) Sludge recycling (%)
Puijenbroek et al., 2019)	Non-OECD/High N	>80% wastewater treated; Recycling same as OECD in 10 years after catch-up	>70% wastewater treated Recycling same as OECD in 30 years after catch-up	>60% wastewater treated	Organic recycling (%)
	Non-OECD/Low N	>70% wastewater treated	>50% wastewater treated	>30% wastewater treated	

Selected RCP – SSP – N scenarios

Scenario	Climate	Development	Land-use	Diet	N policy
Business-	No mitigation	Fossil-fuel driven	Medium regulation;	Meat &	Low
as-usual	(RCP 8.5)	(SSP 5)	high productivity	dairy-rich	ambition
Low N	Moderate	Historical trends	Medium regulation;	Medium	Low
regulation	mitigation (RCP	(SSP 2)	medium productivity	meat &	ambition
	4.5)			dairy	
Medium N	Moderate	Historical trends	Medium regulation;	Medium	Moderate
regulation	mitigation (RCP	(SSP 2)	medium productivity	meat &	ambition
	4.5)			dairy	
High N	Moderate	Historical trends	Medium regulation;	Medium	High
regulation	mitigation (RCP	(SSP 2)	medium productivity	meat &	ambition
	4.5)			dairy	
Best-case	Moderate	Sustainable	Strong regulation;	Low meat	High
	mitigation (RCP	development (SSP 1)	high productivity	& dairy	ambition
	4.5)				
Best-case	Moderate	Sustainable	Strong regulation;	Ambitious	High
+	mitigation (RCP	development (SSP 1)	high productivity	diet shift	ambition
	4.5)			and food	
				loss/waste	
				reductions	
Bioenergy	High mitigation	Sustainable	Strong regulation;	Low meat	High
	(RCP 2.6)	development (SSP 1)	high productivity	& dairy	ambition

Kanter et al., 2020

