Update on benefits assessments

Mike Holland mike.holland@emrc.co.uk EMRC

> TFIAM 47 Brescia 8/5/2018

Updates

- NO₂ and health
- Analysis of healthcare costs
- Impacts on productivity
- Wider CBA / BCA activities

NO₂ and health

- HRAPIE study (WHO, for DG ENV, 2013)
 - http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/health-risks-of-air-pollution-in-europe-hrapie-project.-recommendations-for-concentrationresponse-functions-for-costbenefit-analysis-of-particulate-matter,-ozone-and-nitrogen-dioxide
- DG ENV funded study (2017)
 - http://ec.europa.eu/environment/air/publications/models.htm
- COMEAP (UK Committee on the Medical Effects of Air Pollutants)
 - https://www.gov.uk/government/publications/nitrogen-dioxideinterim-view-on-long-term-average-concentrations-and-mortality
 - Final statement due shortly
- concawe
 - New report? 2014 report at
 https://www.concawe.eu/publication/report-no-914/
- Others?

VITO/KCL for DG ENV

- Methodological requirements
 - Methods should allow for different response functions, irrespective of cut-off
 - Focus on long-term health effects
 - Based on static population map
 - Spatial scale needs to capture strong gradients and spatial variability

Main uncertainty

- Concentration response functions tested
 - HRAPIE: 5.5% change in mortality per 10 ug/m³ with a 20 ug/m³ cutoff, with 33% reduction
 - COMEAP 2015: 2.5% change in mortality per 10 ug/m³ with no cutoff, with 33% reduction
 - Note: final position of COMEAP will be different
- Factor 2-3 difference in impacts for regions with 'moderate' NO₂ exposures (COMEAP generally gives higher estimates).
- Other uncertainties (e.g. mortality rate, population age) have less effect
- Suggested to go to a spatial scale of 100m

HRAPIE and Interim COMEAP functions

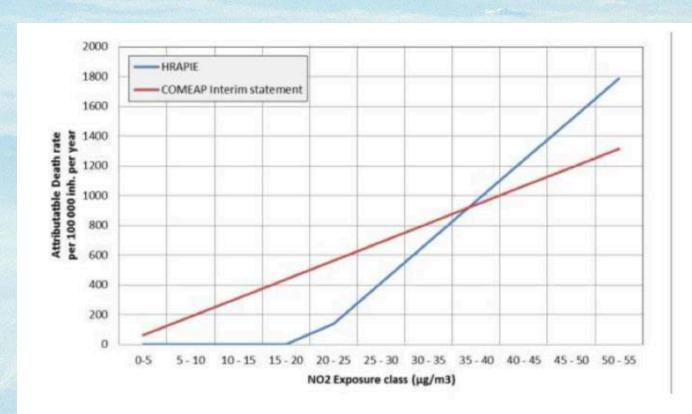


Figure 12: Illustration of the difference between both CRFs showing the attributable deaths per 100 000 inhabitants per year for HRAPIE and COMEAP as a function of NO_2 exposure class, where the bin center is used as the population weighted averaged concentration in each interval. A baseline mortality rate of 1000 / 100000 inhabitants is used here.

Areas with $NO_2 > 20 \text{ ug/m}^3$

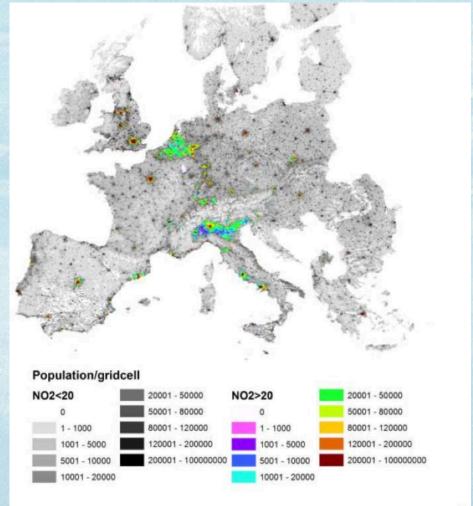


Figure 18: GEOSTAT population map using the CHIMERE 7x7 km NO_2 map to show the $20 \mu g/m^3$ threshold. The area's shown in color indicate regions in excess of $20 \mu g/m^3$ annually (according to CHIMERE). The CHIMERE data was contributed by JRC, E. Pisoni for the base year 2010 (as taken for the SHERPA tool: EC4MACS proxies applied on GAINS total emissions (2010) using ECMWF IFS meteo).

Exposure model developed by VITO/KCL

- Available at the website (see above)
- Starts from 7x7 km, scales down to 1 km
- Geared to annual concentrations
 - Fine for long term effects, not for short term
- "The preliminary results from the GAINS-kernel coupling obtained within this project require further analysis and discussion, nevertheless we have successfully demonstrated the coupling of the methodology with an integrated assessment model."
- Most suited to analysis of traffic emissions
- Bias correction required, depending on response function (?)

Analysis of healthcare costs

- Estimation of costs to the NHS and social care due to the health impacts of air pollution
- For Public Health England, carried out by UK Health Forum and Imperial College
- To be published (?)
- Includes range of 'new' morbidity impacts
- Validation of some required

Effects considered

- Asthma
- Chronic obstructive pulmonary disease
- Coronary Heart Disease
- Stroke
- Diabetes
- Lung cancer
- Low birth weight
- Dementia

Impacts on productivity

- Significant morbidity impact linked to PM_{2.5} and ozone
- But based on limited evidence base
- Not reviewed under HRAPIE in detail
- More extensive literature review now undertaken
- Additional study by IOM/Ricardo for UK government
 - https://uk-air.defra.gov.uk/assets/documents/reports/cat19/1511251135_140610_Valuing_the_impacts_of_air_quality_on_productivity_Final_Report_3_0.pdf

Literature review

- Identified a substantial number of papers (<50) relevant to the impact
- Many on school loss days rather than work loss (ease of measurement issue)
- Concluded that available evidence did not contradict continued use of agreed functions

IOM Ricardo study on productivity

- Analysis for UK government
- Included same function as recommended under HRAPIE
- But included additional endpoints linked to:
 - Mortality
 - Value of volunteering and other non-paid work
 - Etc.
- Significant increase in impact relative to HRAPIE recommendation

Wider CBA / BCA activities

BCA guidelines

- https://sites.sph.harvard.edu/bcaguidelines/methods-and-cases/
 - Valuing Mortality Risk Reductions in Global Benefit-Cost Analysis
 - Valuing Nonfatal Health Risk Reductions in Global Benefit-Cost Analysis
 - Accounting for the Timing of Costs and Benefits in the Evaluation of Health Projects Relevant to LMICs
 - Valuing Changes in Time Use in Low- and Middle-Income Countries
 - Assessing the Economy-wide Effects of Health and Environmental Interventions in Support of Benefit-Cost Analysis
 - Assessing the Distribution of Impacts in Global Benefit-Cost Analysis
 - Valuing Protection against Health-Related Financial Risks
- ISO 14001

WHO Air Quality Guidelines

- In addition to health-protective guideline values, the final guideline document will propose interim targets to assist Member States in monitoring progress towards WHO AQGs as well as in setting national air quality standards.
- Interim targets will be based on the concentration-response functions of each pollutant derived from the abovementioned systematic reviews, but will also take into consideration the variability of contextual factors across settings.
- Contextual evidence includes
 - the balance of desirable and undesirable effects,
 - · priority of the problem,
 - cost and resource implications,
 - population values and preferences,
 - · acceptability,
 - feasibility, and
 - equity and human rights considerations.