Transforming energy demand to meet the 1.5°C target and Sustainable Development Goals without negative emission technologies

Charlie Wilson
International Energy Agency, November 2018

acknowledging: Arnulf Grubler and colleagues at IIASA
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
Conventional wisdom for meeting the 1.5°C target says ...

Overshoot as energy supply technologies scale slowly, but need massive long-term deployment to meet high levels of energy demand.

Inertia in policy & technological systems

Negative emission technologies
Is the conventional wisdom for meeting the 1.5°C target right?

Problems with conventional wisdom ...

• Negative emission technologies are unproven, risky & conflictual
• Scenarios and modelling are biased towards supply-side solutions
• 1.5°C requires rapid transformation which is inescapably socio-technical
• Potential for the emergence of novelty is under-explored
Is the conventional wisdom for meeting the 1.5°C target right?

Problems with conventional wisdom ...

• Negative emission technologies are unproven, risky & conflictual
• Scenarios and modelling are biased towards supply-side solutions
• 1.5°C requires rapid transformation which is inescapably socio-technical
• Potential for the emergence of novelty is under-explored

In response ...

• ‘Low Energy Demand’ (LED) scenario
• Explores rapid transformation in energy services through social, organisational, and technological innovation
• Allows for rising activity levels to meet decent living standards
• Downsizing energy use enables feasible supply-side decarbonisation
Is the conventional wisdom for meeting the 1.5°C target right?

Overshoot as energy supply technologies scale slowly, but need massive long-term deployment to meet high levels of energy demand.

Inertia in policy & technological systems.

Negative emission technologies

Rapid Transformation in energy services and efficiency, with rising activity levels.

Distributed energy supply scales rapidly in a down-sized energy system.

Emissions vs. Time
Low Energy Demand (LED) scenario: disruptive consumer innovation, granularity, energy-service transformation + *standards*

Rapid Transformation
in energy services and efficiency, with rising activity levels

Distributed energy supply
scales rapidly in a down-sized energy system
Low Energy Demand (LED) scenario: disruptive consumer innovation, granularity, energy-service transformation + standards
Low Energy Demand (LED) scenario: disruptive consumer innovation, granularity, energy-service transformation + *standards*

LED scenario is based off SSP2 assumptions

Source: IPCC (2018) Special Report on Global Warming of 1.5°C. Figure SPM 3b.
overview

- challenging the conventional wisdom on 1.5°C

- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important

- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
Technology Lifecycle

<table>
<thead>
<tr>
<th>TRL(^b)</th>
<th>Basic Research</th>
<th>Applied Development</th>
<th>Demonstration</th>
<th>Market Formation</th>
<th>Rapid Diffusion</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

\(^{a}\) Wilson & Grubler (2014)
\(^{b}\) EC (2017)
\(^{c}\) Kramer & Haigh (2009)
\(^{d}\) Bento & Wilson (2016)

Emergence of Novelty?

Energy-Service Transformation?
Technology Lifecycle

<table>
<thead>
<tr>
<th>TRL<sup>b</sup></th>
<th>Basic Research</th>
<th>Applied Development</th>
<th>Demonstration</th>
<th>Market Formation</th>
<th>Rapid Diffusion</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Technology Lifecycle a**
- **TRL^b**
- **Basic Research**
- **Applied Development**
- **Demonstration**
- **Market Formation**
- **Rapid Diffusion**
- **Maturity**

1.5°C Mitigation Options in Global IAMs

- **bioCCS**
- **fossilCCS**
- **solar power**
- **wind power**
- **nuclear power**
- **public transport**
- **electric vehicles**
- **building insulation**

Sources:
- a Wilson & Grubler (2014)
- b EC (2017)
- c Kramer & Haigh (2009)
- d Bento & Wilson (2016)

Energy Technologies

- **bioCCS**
- **fossilCCS**
- **solar power**
- **wind power**
- **nuclear power**
- **public transport**
- **electric vehicles**
- **building insulation**

Emergence of Novelty?

Energy-Service Transformation?
Disruptive innovations offer novel attributes to end users ... and can rapidly change markets

Sustaining innovations -> improve currently valued attributes

- power
- speed
- storage
- low cost per MB
- portability
- versatility
- accessibility (coding)
- low cost per unit

Disruptive innovations -> offer novel attributes, create new value
energy X digital X users

Is disruptive innovation relevant for low-carbon transitions?

Dedicated section in: IPCC (2018) Special Report on Global Warming of 1.5oC
Chapter 4: Strengthening & implementing the global response

potentially disruptive consumer innovations

e-bikes ‘taxi-bus’ ride-share car-share bike-share MaaS VR & tele-presence

SILCI project: silci.org
potentially disruptive consumer innovations

e-bikes ‘taxi.bus’ ride-share car-share bike-share MaaS VR & tele-presence

P2P goods P2P homes internet of things smart appliances pre-fab retrofits smart homes heat pumps

SILCI project: silci.org
potentially **disruptive** consumer innovations

e-bikes ‘taxi-bus’ ride-share car-share bike-share MaaS VR & tele-presence

P2P goods P2P homes internet of things smart appliances pre-fab retrofits smart homes heat pumps

PV + storage P2P electricity vehicle-to-grid disag. feedback time-of-use pricing demand response energy service co.s

VR & tele-presence

P2P goods P2P homes internet of things smart appliances pre-fab retrofits smart homes heat pumps

PV + storage P2P electricity vehicle-to-grid disag. feedback time-of-use pricing demand response energy service co.s
‘mega-trend’ (1) from ownership to **usership**

- e-bikes
- ‘taxi-bus’
- ride-share
- car-share
- bike-share
- MaaS
- VR & tele-presence
- P2P goods
- P2P homes
- internet of things
- smart appliances
- pre-fab retrofits
- smart homes
- heat pumps
- PV + storage
- P2P electricity
- vehicle-to-grid
- disaggregation
- time-of-use pricing
- demand response
- energy service co.s
‘mega-trend’ (2) sharing economy, including P2P

- e-bikes
- ‘taxi-bus’
- ride-share
- car-share
- bike-share
- MaaS
- VR & telepresence
- P2P goods
- P2P homes
- internet of things
- smart appliances
- pre-fab retrofits
- smart homes
- heat pumps
- PV + storage
- P2P electricity
- vehicle-to-grid
- disaggregation feedback
- time-of-use pricing
- demand response
- energy service co.s
‘mega-trend’ (3) from atomised to connected

- e-bikes
- ‘taxi-bus’
- ride-share
- car-share
- bike-share
- MaaS
- VR & telepresence
- P2P goods
- P2P homes
- internet of things
- smart appliances
- pre-fab retrofits
- smart homes
- heat pumps
- PV + storage
- P2P electricity
- vehicle-to-grid
- disaggregation feedback
- time-of-use pricing
- demand response
- energy service co.s
currently *commercial*, niche, but growing rapidly
factored into **LED scenario** (1st order estimates)
emergence of novelty?

energy-service transformation?

Sources:

a Wilson & Grubler (2014)
b EC (2017)
c Kramer & Haigh (2009)
d Bento & Wilson (2016)
<table>
<thead>
<tr>
<th>TRL</th>
<th>Basic Research</th>
<th>Applied Development</th>
<th>Demonstration</th>
<th>Market Formation</th>
<th>Rapid Diffusion</th>
<th>Maturity</th>
<th>Exponential</th>
<th>Materiality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1.5°C mitigation options in global IAMs**
 - bioCCS
 - fossilCCS
 - solar power
 - wind power
 - nuclear power
 - public transport
 - electric vehicles
 - building insulation

- **1.5°C carbon mitigation options in global IAMs**
 - ≈20 years
 - ≈30 years

- **1.5°C low-carbon innovations**
 - mobility-as-a-service
 - EVs & vehicle-to-grid
 - smart home technology
 - P2P goods, P2P homes
 - pre-fab low-energy retrofits
 - PV, storage

- **1.5°C consumer-facing innovations**
 - if strong consumer pull

Sources:
- a Wilson & Grubler (2014)
- b EC (2017)
- c Kramer & Haigh (2009)
- d Bento & Wilson (2016)
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
‘granular’
small unit size
low unit cost
modular
replication

‘lumpy’
large unit size
high unit cost
indivisible
up-scaling
Granular energy technologies diffuse faster (+ are lower risk, + more equitably distributed)

35% of variance in Δt is explained by investment size per unit

Wilson, Grubler, Bento et al. (forthcoming). “Small is Better: The Benefits of Granularity in Energy Technologies”
Granular energy technologies have higher learning rates (controlling for up-scaling)

Learning rates per doubling of cumulative # of units controlling for unit economies of scale (exc. 2 outliers)

overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
Energy-related mitigation strategies from an *energy service* perspective
Energy-related mitigation strategies from an *energy service* perspective

SUPPLY
- decarbonise energy supply
- improve conversion efficiency
 - + reduce distribution losses

END-USE
- change the form or ‘quality’ of the service
- useful service
- mobility
- improve conversion efficiency

Mobility
Energy-related mitigation strategies from an *energy service* perspective

SUPPLY
- decarbonise energy supply
- improve conversion efficiency
- + reduce distribution losses

END-USE
- change the form or ‘quality’ of the service
- improve conversion efficiency
- improve ‘service’ efficiency

useful service
mobility

if urban mobility was provided by on-demand shared vehicles, what % of today’s vehicle fleet would be needed?
mobility

service efficiency
 e.g., increase vehicle occupancy

conversion efficiency
 e.g., improve fuel efficiency
mobility

service efficiency
- e.g., increase vehicle occupancy

conversion efficiency
- e.g., improve fuel efficiency

- **technological innovation**
- **social or institutional innovation**
- **organisational or business model innovation**
- **behavioural innovation**
consumer goods

if smart phone functionality displaced domestic devices and appliances, what % of today’s electricity would be needed to power consumer goods?
consumer goods

service efficiency
e.g., device convergence

e.g., improve device efficiency

conversion efficiency

Power consumption

449 Watt

72 Watt

Stand-by
consumer goods

service efficiency
 e.g., device convergence

conversion efficiency
 e.g., improve device efficiency

- technological innovation
- organisational or business model innovation
- social or institutional innovation
- behavioural innovation
heating & cooling buildings

who occupies the second largest amount of office space in London?
heating & cooling buildings

service efficiency
e.g., diversify use to increase occupancy

conversion efficiency
e.g., improve energy efficiency
heating & cooling buildings

service efficiency

e.g., diversify use to increase occupancy

conversion efficiency

e.g., improve energy efficiency

Ask WeWork what makes it so special and they will say it is about so much more than office space. It is about the “We Generation” – a largely Millennial workforce who demand more from their work than just a job ... they value experiences over material goods, crave a sense of community and fulfilment, and want to be part of something greater than themselves. [WIRED, Jun 2018]
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
Low Energy Demand (LED) scenario: disruptive consumer innovation, granularity, energy-service transformation + standards

Rapid Transformation in energy services and efficiency, with rising activity levels

Distributed energy supply scales rapidly in a down-sized energy system
A scenario is a possible future ... based on clear, consistent & coherent assumptions about the drivers of future change

‘performative force’
A scenario is a possible future ... based on clear, consistent & coherent assumptions about the drivers of future change

‘performative force’

Note: any scenario in which global warming is limited to 1.5°C is strongly normative
scenario
narrative
drivers of change
scenario narrative

drivers of change

bottom-up quantification of activity and energy intensity (‘off model’)
downstream ... then upstream

PROCESS

METHOD & TOOLS

thermal comfort

consumer goods

mobility

food

commercial buildings

industry & manufacturing

freight transport
scenario narrative

drivers of change

downstream ... then upstream

bottom-up quantification of activity and energy intensity ('off model')

integrated modelling of system consequences

energy supply & land-use

thermal comfort

commercial buildings

consumer goods

industry & manufacturing

mobility

freight transport

food

MESSAGE (energy-system model)

GLOBIOM (land-use model)

PROCESS

METHOD & TOOLS
PROCESS

scenario narrative

drivers of change

bottom-up quantification of activity and energy intensity (‘off model’)
downstream ... then upstream

integrated modelling of system consequences

energy supply & land-use

climate & health

METHOD & TOOLS

thermal comfort

consumer goods

mobility

food

commercial buildings

industry & manufacturing

freight transport

MESSAGE (energy-system model)

GLOBIOM (land-use model)

GAINS (air pollution)

MAGICC (climate)
quality of life
urbanisation
end-user roles

LED scenario
quality of life, urbanisation, end-user roles, information innovation, LED scenario
quality of life
urbanisation
novel energy services
end-user roles
information innovation
quality of life
urbanisation
novel energy services
end-user roles
information innovation
quality of life
urbanisation
novel energy services
information innovation
decentralised service provision
deep-end-user roles
rapid transformation
granularity
don-use value from services
digitalisation of daily life
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
changes from 2020 to 2050

increase in activity
- factor 2 increase in Global South (7,600 p-km)

reduction in energy intensity
- factor 3 reduction (engine-to-wheel) from electrification
 + shared & responsive modes
 + increase vehicle occupancy by 25% and daily usage by 75%
 + global vehicle fleet halves!
thermal comfort

changes from 2020 to 2050

increase in activity
- converge on 30m²/capita

reduction in energy intensity
- Global North: double retrofit rate to 3%
- Global South: new build to Passivhaus standards

+ consumer preference for multi-functionality (e.g. heat pumps, fuel cells)

+ mixed use & flexible use building design
changes from 2020 to 2050

increase in activity
- factor 3 increase in Global South (~24 devices/capita)

reduction in energy intensity
- improves 15% per device on average (~82 kWh/device)
- improves >70% in lighting (LEDs!)

+ device convergence (multi-functionality)
+ ownership to 'usership'
scenario narrative
drivers of change
bottom-up quantification of activity and energy intensity ('off model')
downstream ... then upstream
integrated modelling of system consequences
energy supply & land-use
climate & health
across all end-use services to 2050

increase in activity
- more demand for useful services (esp. Global South)

AND

reductions in energy intensity
- improved conversion efficiency
- avoided losses (passive systems)

- new forms of service provision
- improved service efficiency
By 2050, more services are provided with less energy (columns show Δ from 2020 to 2050)
By 2050, **more services** are provided with **less energy** (columns show Δ from 2020 to 2050)
scenario narrative

drivers of change

bottom-up quantification of activity and energy intensity ('off model')
downstream ... then upstream

PROCESS

METHOD & TOOLS
deeply quantified activity and energy intensity ('off model')
donstream ... then upstream

thermal comfort

consumer goods

mobility

food

commercial buildings
industry & manufacturing
freight transport

food

mobility

consumer goods

thermal comfort

commercial buildings
industry & manufacturing
freight transport
By 2050, more services are provided with less energy ... with knock-on effects upstream

![Graphs showing changes in energy demand and final energy efficiency across different sectors](image-url)
LED is the lowest global energy demand scenario ever published (we think)
overview

- challenging the conventional wisdom on 1.5°C
- why disruptive innovations are important
- why granularity is important
- why energy-service efficiency is important
- how we developed the LED scenario
- energy demand in the LED scenario
- implications of the LED scenario
Energy end-use in LED is rapidly electrified, with renewables the dominant resource
Down-sizing the energy system enables faster and more feasible decarbonisation

Compared to other $\leq 2^\circ$C scenarios, renewables in LED have

<table>
<thead>
<tr>
<th>higher relative market shares:</th>
<th>lower absolute growth rates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8% (by 2020)</td>
<td>20-50% historically</td>
</tr>
<tr>
<td>32% (by 2030)</td>
<td>15% (2020 to 2030)</td>
</tr>
<tr>
<td>60% (by 2050)</td>
<td>5-10% (2040 to 2050)</td>
</tr>
</tbody>
</table>
LED uses SDG12 (responsible consumption and production) as entry point for addressing other SDGs.

e.g., LED avoids 1.4m premature deaths per year through reduced air pollution [GAINS model]
Conclusions & implications from LED scenario analysis

• Limiting warming to 1.5°C is just about conceivable without CCS and negative emission technologies

• Importance of accelerated transformation in energy services
 • social + organisational innovation as well as technological
 • e.g., ‘usership’, granularity, sharing economy, digitalisation, diverse end user roles, economies of scope

• Policy implications:
 • from mega-projects & energy supply to empowering energy users
 • from carbon pricing to standards, ‘scripted’ innovation, and open regulatory environments

• Implications for us:
 • countless opportunities to enjoy energy services for dramatically less energy consumption
Transforming energy demand to meet the 1.5°C target and Sustainable Development Goals without negative emission technologies

Charlie Wilson
IEA, November 2018

acknowledging: Arnulf Grubler
and colleagues at IIASA