Spatial optimization for land use sustainability—
a case for renewable energy

Piera Patrizio (1), Sylvain Leduc (1), Hernán Serrano León (1)
Georg Kindermann (1), Sabine Fuss (1,2), Florian Kraxner (1)

(1) Ecosystems Services and Management Program, IIASA, Laxenburg, Austria
(2) Working Group on Sustainable Resource Management and Global Change, Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany

Kick-Off Workshop of the RESTORE+ Project
IIASA, Laxenburg, Austria, 18–20 April 2017
Project Aim

To identify the potential and cost of production of renewable energy (RE) in the Alps in regards with the protection of the ecosystems services (ESS)
Background

- **Alpine Convention’s Energy Protocol:** Alpine region to make a long-term contribution to meeting Europe’s energy needs (EC 2005, p. 37)
- **Concern:** ESS often compete with RE for productive sites ⇒ important tradeoffs to be analyzed to maintain ES functions and services under increasing RE demand and other pressures.
- **Contributions:**
 - Detailed spatial analysis of renewable energy solutions and tradeoffs in multifunctional landscapes
 - Determining the cost-optimal location of RE plants under **sustainability criteria** at different scales
 - Support decision-makers in forming strategies offering robustness across uncertainties
The BeWhere Umbrella

- Forest resources
- Crop residuals
- Biofuel
- Heat
- Biochar
- Fertilizers
- Biogas
- Power
- Power to liquid/gas
- Co-firing
- BECCS
- Geothermal
- Ecosystem services
- MSW
- Algae
- Solar
- Wind
- Hydro

The BeWhere Umbrella

recharge green
IUCN Categories

International Union for Conservation of Nature

Legend

UNESCO WH + BR

UNESCO World Heritage

Natura 2000

Sources: combined from EEA - European Environment Agency, WDPA - World Database on Protected Areas, and ALPARC.
Harmonized Protected Areas

Scenario 1 – Production restrictions

- High protection
- Medium protection
- Low protection
Marginal protection cost

Graph showing the relationship between the share of biomass in protected areas and the marginal protection cost.

- **Marginal protection cost (EUR/kWh)**
- **Share of biomass in protected areas**

Legend:
- 10 PJ - high
- 10 PJ - Medium
- 10 PJ - Low
- 10 PJ - None
- 12 PJ - high
- 12 PJ - Medium
- 12 PJ - Low
- 12 PJ - None
- 14 PJ - high
- 14 PJ - Medium
- 14 PJ - Low
- 14 PJ - None
Conclusion

- Renewables support to meet has the potential to worsen the trade-offs with respect to biodiversity conservation goals.
- Supporting renewables without taking into account their impact on other policy goals raises the cost of achieving other policy target.
- Other trade-off (e.g. presence of top down policy instruments) can be considered by this approach due to its flexibility.
The tool

http://www.jecami.eu/
Thank you!

More information on IIASA

www.iiasa.ac.at

More on BeWhere

www.iiasa.ac.at/bewhere

Contact

Sylvain Leduc, leduc@iiasa.ac.at