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Executive Summary 
 

This Good Practice Guidance (GPG) document provides guidance on how to calculate the extent of 
land degradation for reporting on United Nations (UN) Sustainable Development Goal (SDG) 
Indicator 15.3.1: the proportion of land that is degraded over total land area.  This guidance supports 
implementation of the Tier I methods for Indicator 15.3.1 adopted by the UN Statistical 
Commission1, and the development of analytical methods for measuring its three sub-indicators, 
which are:  

1. Trends in land cover 
2. Trends in land productivity 
3. Trends in carbon stocks (above and below ground), which is currently represented by soil 

organic carbon (SOC) stocks.  

The Indicator is calculated by integrating the sub-indicators using a one-out-all-out (1OAO) method, 
in which a significant reduction or negative change in any one of the three sub-indicators is 
considered to comprise land degradation.  Significant reductions can be identified using statistical 
criteria, or by a qualitative assessment of the magnitude of change.  The Indicator is reported as a 
binary quantification (i.e., degraded/not degraded) of the extent of degraded land in hectares, and 
expressed as the proportion (percentage) of land that is degraded over total land area.  

Version 2 of the GPG incorporates a number of advances in the quality and availability of datasets, as 
well as analytical methods for calculating Indicator 15.3.1 and its sub-indicators that have emerged 
since publication of Version 1 of the GPG (Sims et al. 2017).  These advances have been identified 
through research, stakeholder engagement, including analysis of recommendations from countries 
reporting on Indicator 15.3.1 in the first reporting period in 2018, and reviews of drafts of this report 
by global experts in relevant fields.  This report also incorporates new developments from the 
growing number of publications and initiatives focussed on improving the quality and availability of 
data and analytics for the SDGs in general, and Indicator 15.3.1 and Land Degradation Neutrality 
(LDN) in particular.  While the measurements of Indicator 15.3.1 form only one part of the 
assessment of LDN, the relationship between the Indicator and LDN is discussed in more detail in 
Version 2 (this document), and additional guidance on the calculation and use of measurements 
during the baseline period should clarify the interpretation of Indicator 15.3.1 for monitoring LDN. 

The guidance covers three sub-indicators. The Land Cover sub-indicator reports degradation in land 
cover change based on a national assessment of the positive or negative aspects of transitions from 
one land cover type to another.  In Version 2, this chapter highlights the need for countries to first 
consider the main drivers of land cover change, and then to determine which transitions to identify 
as degraded for reporting on Indicator 15.3.1.  This chapter incorporates updates to the quality of 
available land cover datasets and classification methods.   

 
1 https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf  
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The Land Productivity sub-indicator reports productivity degradation using Earth Observation (EO) 
data to monitor changes in Net Primary Productivity (NPP) of vegetation.  This assessment is based 
on three metrics, calculated from a time series of annual NPP observations, that are designed to 
identify changes in the trajectory and level of productivity.  The statistical methods for assessment of 
each of the three metrics have been simplified and improved in Version 2 of the GPG, and they can 
now be interpreted in terms of the severity of degradation and the confidence of the assessment.  A 
revision of the methods for combining the metrics also enables degradation to be identified in a 
range of additional phases of the long-term productivity cycle, including situations in which 
productivity is stable for a long period of time, or is increasing but where the level of productivity is 
low.   

The Carbon Stocks sub-indicator has been significantly revised in light of updates and new guidance 
from the 2019 Refinement to the Intergovernmental Panel on Climate Change (IPCC) 2006 
Guidelines for National Greenhouse Gas Inventories, and now includes expanded guidance on the 
methods for assessment of ‘significant’ change in Soil Organic Carbon (SOC) stocks.  This chapter 
now also incorporates updates to the data sources available for estimating change in SOC stocks 
since the publication of version 1 of the GPG.   

In addition to improved guidance on the calculation of the methods, Version 2 provides more 
guidance on the interpretation and reporting of degradation, based on country recommendations 
following the 2018 reporting period.  This includes guidance on how to identify false positive or false 
negative outcomes in cases where the degradation analysis of the 1OAO process may produce a 
counterintuitive outcome, such as where land remediation activities to remove invasive weeds 
reduces the apparent NPP in EO data, which would normally indicate degradation despite this being 
an activity to improve the condition of the land.   

Additional guidance is provided on recalculating the time-series data sets, following the adoption of 
new and improved datasets into the analysis, based on similar guidance provided by the IPCC. In 
most cases there is likely to be an overlapping period where both the former and new datasets are 
available, and the differences measured between them can be used to interpret or estimate missing 
values.   

Guidance on assessing the magnitude of degradation, and on identifying ‘brightspots’ and ‘hotspots’ 
is a new addition to the GPG.  This information can be used to balance ‘losses’ to degradation 
against ‘gains’ in the area that improves from a degraded state.  It can also be used to identify local 
areas of the highest degradation severity, which may be useful in optimising efforts to restore 
degraded lands, or avoid degrading new land in future, consistent with the achievement of LDN.  
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Glossary of terms, definitions and concepts 

Above ground biomass 

The biomass of living vegetation, both woody and herbaceous, above the soil including 
stems, stumps, branches, bark, seeds, and foliage (IPCC 2003). 

Baseline 

The baseline period, during which baseline conditions should be calculated, is the 16 years 
from 1 January 2000 to 31 December 2015. This period was selected because of the 
improvements in the availability of high frequency, moderate resolution global Earth 
observation (EO) data in the year 2000 (from the Moderate Resolution Imaging 
Spectrometer (MODIS) satellites) and because a period of about 15 years is typically 
sufficient to encounter most of the variability in natural systems (Kennard et al. 2010).  
Subsets of the baseline period may be used depending on the availability of data, the 
statistical requirements of the sub-indicator or metric, and the perception by countries of 
the representativeness of conditions during this period as a benchmark for comparison of 
future changes.   

The extent of degraded land measured in the baseline provides the benchmark against 
which change in the extent of degraded land is compared in subsequent reporting periods.  
The baseline is necessary to assess progress towards achieving Sustainable Development 
Goal (SDG) Target 15.3 and Land Degradation Neutrality (LDN).  The baseline year is 2015, 
which was the year that the UNCCD made the decision to pursue LDN (Orr et al. 2017), and 
when the 2030 Agenda for Sustainable Development (the SDGs) was adopted by all United 
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Nations (UN) Member States2.  
 

Below ground biomass  

All biomass of live roots. Fine roots of less than 2 mm diameter are often excluded because 
these often cannot be distinguished empirically from soil organic matter or litter (IPCC 
2003).  

 

Biochar  

The solid carbonised product produced by the thermochemical conversion of biomass 
through pyrolysis (heating with limited air). Here biochar only refers to materials that have 
been produced under process conditions in which relatively easily mineralisable organic 
materials are converted to more persistent forms by heating to above 350 °C with limited air 
through a gasification or pyrolysis process (IPCC 2019).  

Carbon stock  

The quantity of carbon in a pool or a reservoir that has the capacity to accumulate or release 
carbon. Ecosystem carbon pools are composed of biomass (above and below ground), dead 
wood and litter (above and below ground), and soil organic matter (IPCC 2003; Figure 0-1).  

 
Figure 0-1. Schematic of live and dead ecosystem carbon pools. 

 
2 https://sdgs.un.org/goals  
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Classification [ISO 19144-1:2009, 4.1.4] 

Abstract representation of real-world phenomena using classifiers (see classifier, class)  

Classification system [ISO 19144-1:2009, 4.1.5] 

System for assigning objects to classes  

Classifier, class [ISO 19144-1:2009, 4.1.6] 

Definition used to assign objects to legend classes (see land cover element, landscape 
element)  

NOTE Classifiers can be algorithmically defined, or defined according to a set of classification 
system (see classification system) specific rules.  

Dead wood  

All non-living woody biomass not contained in the litter, either standing, lying on the 
ground, or in the soil. Dead wood includes wood lying on the surface, dead roots, and 
stumps generally larger than or equal to 10 cm in diameter (IPCC 2003). 

Equivalent Soil Mass (ESM)  

The reference soil mass per unit area (Mg ha-1)  chosen in a layer. Equivalent C mass is C 
mass stored in an ESM (Ellert et al. 2001). SOC. Several methods for calculating ESM are 
available that differ in their approach to the calculation of the reference mass and/or the 
depth at which the mass of soil is adjusted. A simple method is proposed by Wendt and 
Hauser (2013), where for any soil sample depth layer (d) the dry sample mass is divided by 
the area sampled by the probe or auger, which is the cross-sectional area of its inside 
diameter. 

Inorganic soil carbon  

Either primary minerals in the parent material from which the soil was formed (e.g., 
limestone), or secondary minerals (i.e., pedogenic carbonates) that arise during soil 
formation (IPCC 2006). 

Key category 

Source or sink category that is prioritised within the national inventory system because its 
estimate has a significant influence on a country’s total inventory of greenhouse gases in 
terms of the absolute level, the trend, or the uncertainty in emissions and removals (IPCC 
2006). In the context of this GPG, a key category relates to a carbon pool that is prioritised 
because its estimate has a significant influence on estimation of degradation in the carbon 
stocks sub-indicator for a given land cover class.  

Land-based natural capital 

The natural capital of land resources. This includes the properties of the soil (chemical, 
physical and biological factors), geomorphological, biotic and hydrological features, that 
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interact with each other and with the climate to determine the quantity and nature of 
ecosystem services provided by the land (Orr et al. 2017). 

Land cover [UNFAO LCCS 2:2005] 

Observed (bio)physical cover on the Earth’s surface.  

NOTE: Land cover is distinct from land use.  

The distribution of vegetation types, water bodies and human-made infrastructure (Di 
Gregorio 2005). Land cover also reflects the use of land resources (i.e., soil, water and 
biodiversity) for agriculture, forestry, human settlements and other purposes (FAO-GTOS. 
2009).  

There is an international standard for the sub-indicator on land cover (ISO 19144-2:2012)3 
which includes the LCML, a common reference structure (statistical standard) for the 
comparison and integration of data for any generic land cover classification system. LCML is 
also used for defining LCEUs used in the SEEA, and closely linked to the IPCC classification on 
land cover/land use. 

Land cover class 

Class (see classifier, class) of land cover (see land cover) within a broader set of classes 
defined within a land cover classification system (see classification system). It is specified by 
the properties of the elements that constitute a particular class.  

Land Cover Classification System (LCCS)  

Framework to define and organize the land cover types or classes (see land cover class) used 
in a specific application (Di Gregorio & O’Brien 2012). The LCCS framework of the UN Food 
and Agriculture Organization (FAO) uses consistent, unique and systematically-applied 
principles for classification. The framework should use objective “logical” class definitions, 
rather than subjective “cognitive” definitions of land cover. Hence, logical classes are 
defined by the actual biophysical elements present, their arrangement and their properties. 
A land cover classification system should also be capable of describing the whole range of 
earth surface features. 

Land Cover/Ecosystem Functional Unit (LCEU)  

An area with relatively homogenous environmental characteristics that control plant 
productivity potential such as land cover, soil type, climate conditions, elevation etc.  This 
definition is consistent with the LCEU described in the UN Statistical Commission’s System of 
Environmental and Economic Accounting (SEEA) Ecosystem accounting units, but here 
explicitly includes land cover and climate conditions as potential inclusions.  

 
3 https://www.iso.org/standard/44342.html  
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Land cover element, landscape element 

Feature or basic component in the landscape which can be assigned a single classification. 
Elements may be abiotic (e.g., water, soil, rock and man-made surfaces) or vegetation (e.g., 
grasses, shrubs, bushes and woody plants). Within a map or region, a particular land cover 
class (see land cover class) may be instantiated in one or more land cover elements. 

Land Cover Meta Language (LCML; [ISO 19144-2:2012]) 

Logical general model used to describe land cover features (see feature) from which more 
specific rules can be described to create a particular classification system (see classification 
system)  

The Land Cover Meta Language (LCML) (ISO 19144-2: 2012)4 uses Unified Modelling 
Language (UML) classes to represent a framework for land cover elements and their 
attributes, arranged in a structured way, to ensure that classes can be clearly understood 
and readily compared within and between user groups and communities. 

Land cover transition 

Change in the type of land cover, described by a change in the classification of land cover 
elements. A transition that reduces the biological or economic productivity and complexity 
of the land is considered degradation.  

Land degradation  

The reduction or loss of the biological or economic productivity and complexity of rain fed 
cropland, irrigated cropland, or range, pasture, forest and woodlands resulting from a 
combination of pressures, including land use and management practices. This definition was 
adopted by and is used by the 197 Parties to the United Nations Convention to Combat 
Desertification (UNCCD).5 

Land Degradation Neutrality (LDN) 

A state whereby the amount and quality of land resources necessary to support ecosystem 
functions and services, and enhance food security, remain stable or increase within specified 
temporal and spatial scales and ecosystems (Decision 3/COP.12, UNCCD, 2015a). 

Land productivity  

The biological productive capacity of the land - the source of all the food, fibre and fuel that 
sustains humans.  This is most effectively measured in the Land Productivity sub-indicator 
using satellite EO datasets representing NPP (see Net Primary Productivity). Changes in land 
productivity point to long-term changes in the health and productive capacity of the land 
and reflect the net effects of changes in ecosystem functioning on plant and biomass 
growth. This assessment includes only above-ground productivity and can be applied to all 

 
4 https://www.iso.org/standard/44342.html  
5 United Nations Convention to Combat Desertification. 1994. Article 1 of the Convention Text 
http://www2.unccd.int/sites/default/files/relevant-links/2017-01/UNCCD_Convention_ENG_0.pdf  
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natural and anthropogenic terrestrial environments.  ISO 19115-1:20146 will guide the 
development of a new international standard. 

Land unit 

The finest-resolution spatial unit. In most cases this will typically be the extent of land 
occupied by an image pixel.  This definition is consistent with Orr et al. (2017). 

Land use [UNFAO LCCS 2:2005] 

The arrangements, activities and inputs that people undertake in a certain land cover (see 
feature) type to maintain it or produce change. 

NOTE This definition of land use establishes a direct link between land cover and the actions 
of people in their environment. Multiple land uses can coexist at the same location (e.g. 
forestry and recreation). This is contrary to the term land cover classes, which are mutually 
exclusive.  

EXAMPLE “Recreation area” is a land use term that can be applicable to different land cover 
types, e.g. sandy surfaces such as a beach; a built-up area such as a pleasure park; 
woodlands etc.  

Legend [UNFAO LCCS 2:2005] 

Application of a classification (see classification) in a specific area using a defined mapping 
scale and specific data set. 

The classes constituting a suitable legend should be: 

I. Unambiguous: being mutually exclusive and unique 
II. Complete: in terms of spatial coverage for the region of interest 

III. Exhaustive: providing complete thematic coverage for the full range of land cover 
classes in the region of interest. 

The level of detail for a given legend will depend on the application of the classification 
exercise and the thematic and spatial accuracy of available data.  

Examples: Some of the more commonly used land cover legends range from coarse thematic 
detail, such as the six class land cover/use legend used by the Intergovernmental Panel on 
Climate Change (IPCC) (Penman et al. 2003), to more complex hierarchical legends such as 
the 22 class European Space Agency’s Climate Change Initiative Land Cover (CCI-LC) dataset 
(Defourny et al. 2012).  

Legend class [ISO 19144-1:2009, 4.1.16] 

The class (see classifier, class) resultant from the application of a classification (see 
classification) process.  

 
6 https://www.iso.org/standard/53798.html  
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NOTE: In order to avoid confusion with respect to the term "class", the result of a 
classification process will be termed a "legend class". This use of the term "class" is distinct 
from the term "class" as used in UML modelling.  

Litter 

All non-living biomass - with a size greater than the limit for soil organic matter (2 mm) and 
smaller than the minimum diameter chosen for dead wood (10 cm) - lying dead and in 
various states of decomposition above or within the mineral or organic soil. This includes the 
litter layer as usually defined in soil typologies. Live fine roots above the mineral or organic 
soil (less than 2 mm diameter) are included in litter where they cannot be distinguished from 
it empirically (IPCC 2003). 

Method of computation  

The extent of degradation is calculated for each of the sub-indicators during the baseline 
and reporting periods.  The One Out, All Out (1OAO)7 principle is applied to the sub-indicator 
estimates to determine the extent of land that is degraded over total land area. 1OAO is 
applied to account for changes in the sub-indicators which are depicted as (i) positive or 
improving, (ii) negative or declining, or (iii) stable or unchanging. If one of the sub-indicators 
is negative (or stable when degraded in the baseline or previous reporting period) for a 
particular land unit, then it would be considered as degraded subject to validation by 
national authorities.  Specific details of the methods for calculating each of the sub-
indicators and the Indicator are presented in the relevant chapters in this report.  

Net primary productivity (NPP)  

The net amount of carbon assimilated after photosynthesis and autotrophic respiration over 
a given period of time (Clark et al. 2001). NPP is measured in mass of carbon per area per 
unit of time (for example kg C/ha/year or g C/m2/day). Remote sensing is the most effective 
way to estimate NPP in fine detail at national scales, but it is not directly measured by EO 
sensors. NPP is estimated from known correlations between the fraction of absorbed 
photosynthetically active radiation (fAPAR) and plant growth vigour and biomass within 
specific land cover types and locations (see Box 1).  

 

 
7 https://circabc.europa.eu/sd/a/06480e87-27a6-41e6-b165-0581c2b046ad/Guidance%20No%2013%20-
%20Classification%20of%20Ecological%20Status%20(WG%20A).pdf  
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Organic soils  

Identified on the basis of criteria 1 and 2, or 1 and 3 listed below (FAO 1998; IPCC 2006): 

Box 1. Net Primary Productivity, Biomass and Normalized Difference Vegetation Index: How are 
they related and what are their differences?  

Biomass is the total mass of living plant organisms in a given area. It is generally measured in units 
of dry mass per area (i.e. after removing the water) or units of Carbon per area. For example, kg 
ha-1 or gC m-2. In the figure below it is the contents of the large cylindrical container, or “bucket”. 
Net Primary Production (NPP) is the amount of biomass gained (as a result of photosynthesis) in a 
given period of time. NPP is the difference between gross primary productivity (GPP) and plant 
respiration. NPP is measured in the same units as biomass, but also per unit of time, e.g. kg ha-1 
year-1 or gC m-2 day-1. In the figure, NPP is the arrow showing “new” biomass entering the cylinder, 
akin to water filling the bucket. There are also drainages (losses of biomass) due to herbivory, 
litterfall, and plant decomposition. The size of the bucket can, therefore, increase, decrease or 
remain equal in a given period of time, depending on the relative sizes of NPP and the drainage 
losses. Biomass and NPP are generally positively correlated, as more biomass means more leaves 
producing photosynthesis and therefore more NPP. There are, however, many exceptions to this. 
For example, a tropical forest next to a sugarcane plantation may have a much higher biomass, but 
a similar amount of NPP.  

Normalized Difference Vegetation Index (NDVI) is a unitless index calculated from the reflectance 
measured by remote sensors. NDVI does not measure Biomass nor NPP directly. NDVI tends to be 
linearly related to the fraction of radiation absorbed by green leaves during photosynthesis, which 
in turn determines the value of NPP. Therefore, NDVI has been used in many studies to estimate 
NPP. The relationship between NDVI and Biomass tends to be also positively correlated, but NDVI 
saturates (i.e. stops responding) when Biomass is high.  
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1. Thickness of organic horizon ≥10 cm. A horizon of <20 cm must have ≥12% organic 
carbon when mixed to a depth of 20 cm. 

2. Soils that are never saturated with water for more than a few days must contain 
more than 20% organic carbon by weight (i.e., about 35% organic matter). 

3. Soils are subject to water saturation episodes and has either: 
a. At least 12% organic carbon by weight (i.e., about 20% organic matter) if the 

soil has no clay; or 
b. At least 18% organic carbon by weight (i.e., about 30% organic matter) if the 

soil has 60% or more clay; or 
c. An intermediate, proportional amount of organic carbon for intermediate 

amounts of clay. 

All other types of soils are classified as mineral soils (IPCC 2006). 

Physiognomy  

General appearance of an object or terrain, without reference to its underlying or scientific 
characteristics. 

Productivity index 

The algorithm used to estimate land productivity levels from image data.  There are many 
vegetation indices that can be calculated from image data which have been shown to be 
effective surrogates for fAPAR and highly correlated with NPP.  One of the oldest and most 
commonly used surrogates of primary productivity is the Normalised Difference Vegetation 
Index (NDVI) which is an indicator of green leaf productivity and biomass (Tucker 1979).  The 
NDVI and other similar indices typically use spectral wavelengths correlated with aspects of 
plant cover, biomass and/or growth vigour, though each index may be better suited to some 
landscapes and vegetation types than others.   

For the purposes of reporting on SDG Indicator 15.3.1, it is not necessary to quantify the 
magnitude of change in productivity in units of NPP, but only to know whether productivity 
is increasing (positive), decreasing (negative), or stable for the land unit at a particular time. 
The relative change in a unit-less index, such as the NDVI, is often sufficient to determine 
land degradation, in accordance with the methodology presented in this GPG. This also 
reduces the sampling effort required by countries to convert index values into finite units for 
NPP assessments. 

Note however that an increase in NPP or productivity index values does not necessarily 
indicate improvements in land condition. A typical example is found in shrub or bush 
encroachment, which may increase NPP levels in native, formerly sparsely-vegetated areas 
(Orr et al. 2017) but have negative effects on biodiversity, habitat provision or the ability to 
restore land to its former land cover type. The interpretation of changes in productivity 
levels should always be conducted in the context of additional local data and information 
(see Sims et al. 2020 for more information).   
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Reporting Period (tn)  

The time period over which the sub-indicator is measured and quantified for the reporting 
period using the same methods employed for the baseline period.  

The UNCCD has approved a four-year reporting frequency,8 and therefore a four-year 
reporting period.  However, reporting every four years may not be practical or offer a 
reliable detection of change for many practices for slow changing variables, such as SOC 
stocks.  

Reporting unit 

An aggregation of land units for the purpose of analysis or reporting.  Reporting units may be 
aggregated based on administrative boundaries, environmental management areas, large 
scale natural features (e.g. river basins) and other factors relevant for reporting purposes 
such as national parks or other protected areas, statistical areas.  This definition is analogous 
to the SEEA Ecosystem Accounting Units9. 

SDG indicator 15.3.1  

The proportion of land that is degraded over total land area.  Determined as a binary - 
degraded/not degraded - quantification based on the analysis of available data for three 
sub-indicators to be validated and reported by national authorities. The sub-indicators 
(Trends in Land Cover, Land Productivity and Carbon Stocks) were adopted by the UNCCD’s 
governing body in 2013 as part of its monitoring and evaluation approach.10  

Soil Organic Carbon (SOC)  

The amount of carbon stored in soil. SOC is the main component of soil organic matter 
(SOM). The persistence of SOC is seen as an ecosystem property, in that its level reflects the 
biogeochemical functioning of the ecosystem. Often, in several modelling approaches, SOC is 
conceptually divided into sub-pools with fast (Active sub-pool), intermediate (Slow sub-
pool), and long (Passive sub-pool) turnover times (IPCC 2019). In observational studies 
however, ‘short-lived’ SOC can persist for long periods in the soil if it is, for instance, 
physically protected from degradation within the soil matrix. Similarly, ‘long-lived’ SOC 
forms can be rapidly degraded given favourable microbial conditions.  

SOC stock  

The mass of SOC per unit area for a reference soil layer. The reporting standard is SOC stock 
in tonnes of organic carbon per hectare to a depth of 30 cm (IPCC 1997). Determination of 

 
8 By its decision 15/COP.13, the UNCCD Conference of the Parties has approved a four-year frequency for countries to provide information 
on the strategic objectives and the implementation framework of the UNCCD 2018-2030 strategic framework. 
https://www.unccd.int/sites/default/files/sessions/documents/2019-08/15COP13_0.pdf 
9 https://unstats.un.org/unsd/envaccounting/workshops/eea_forum_2015/91.%20SEEA%20EEA%20Tech%20Guid%201%20Functional 
%20approach%20to%20ecosystem%20accounting%20(30March2015).pdf  
10 By its decision 22/COP.11, the Conference of the Parties established a monitoring and evaluation approach consisting of: (a) indicators; 
(b) a conceptual framework that allows for the integration of indicators; and (c) indicators sourcing and management mechanisms at the 
national/local level. 
http://www.unccd.int/en/programmes/Science/Monitoring-Assessment/Documents/Decision22-COP11.pdf  
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SOC stock requires measurements of SOC concentration in soil, corrected for water content, 
soil bulk density and gravel content: 

 
Equation 0-1 

Where SOCm is the concentration of organic carbon in the oven-dry soil (%), 𝜌 is the soil bulk 
density (g cm-3), 𝑔 is the gravel content (g g-1), and 𝑑 is the thickness of the layer (cm).  

Quantifying SOC stock at fixed depths as the product of soil bulk density, organic carbon 
concentration, proportion of coarse fragments and depth (Equation 0-1) provides a simple 
approach for reporting change in SOC stock. However, in the context of land 
use/management change, this method can systematically overestimate or underestimate 
SOC stocks where bulk densities have changed (e.g., under changes from full to minimum 
tillage in croplands). Where bulk densities differ between management practices or over 
time periods, more accurate estimates of SOC stock can be derived based on quantification 
in equivalent soil masses (Wendt and Hauser, 2013; Australian Government, 2014). Thus, 
recent IPCC guidance (IPCC 2019) recommends expressing carbon stocks on an equivalent 
soil mass basis.  

An extended ISO 28258:2013 (Soil quality - Digital exchange of soil-related data)11 will be the 
core model for exchanging soil data. 

SOC stock change  

The change in SOC stocks between the reporting period (tn) and the baseline (t0), in the units 
of tons of carbon per hectare (t C ha-1) and include the uncertainty of the change if derived 
from repeat measurements. 

Soil Organic Matter (SOM) 

Organic carbon in mineral and organic soils (including peat) to a specified soil layer chosen 
by the country and applied consistently through the time series. Live fine roots (of less than 
2 mm diameter) are included with soil organic matter where they cannot be distinguished 
from it empirically (IPCC 2003). Note: The definition here does not explicitly mention soil 
microfauna and microbes, however, these are also included where they cannot be 
distinguished from the SOM empirically. 

Sub-indicators 

Proxies to monitor the essential variables that reflect the capacity to deliver land-based 
ecosystem services.  The sub-indicators are globally agreed upon in definition and 
methodology of calculation and deemed both technically and economically feasible for 

 
11 https://www.iso.org/standard/44595.html  
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systematic observation under both the Global Climate Observation System12 and the 
integrated measurement framework of the SEEA.13  

The sub-indicators are few in number, complementary and non-additive components of 
land-based natural capital and sensitive to different drivers and mechanisms of degradation. 
While not comprehensive in their assessment of land degradation, together the three sub-
indicators can represent the quantity and quality of land-based natural capital and its 
associated ecosystem services. They address changes in different yet synergistic and highly 
relevant ways. Change in land cover is, in ecological terms, a transformational variable and 
addresses, among other potential drivers of change, land conversion. Land productivity 
trends is directly reflected in the definition of land degradation, and is a “fast” ecological 
variable that can capture relatively fast changes in land-based natural capital, while trends in 
carbon stocks above and below ground is a “slow” ecological variable, which reflects slower 
changes that suggest a trajectory or proximity to thresholds (Orr et al. 2017).  The three sub-
indicators of SDG Indicator 15.3.1 are: 

1. Land cover (see land cover), which serves two functions for SDG indicator 15.3.1: (1) 
changes in land cover may point to land degradation when there is a loss in 
productivity in terms of ecosystem services considered desirable in a local or 
national context; and (2) a land cover classification system can be used to 
disaggregate the other two sub-indicators to potentially increase the relevance of 
summary statistics for policy or environmental use.  
 

2. Land productivity (see land productivity), which refers to changes in the health and 
productive capacity of the land as measured using EO data representing total above-
ground NPP.   

 
3. Carbon stock (see carbon stock): in UNCCD decision 22/COP.11, soil organic carbon 

(SOC) stock (see SOC stock) was adopted as the metric to be used with the 
understanding that this metric will be replaced by total terrestrial system carbon 
stocks, once operational.   

Total carbon stock  

The quantity of carbon in all of the components of ecosystem carbon pools (IPCC 2003).  

Total land area  

The total surface area of a country excluding the area covered by inland waters such as 
major rivers and lakes.14 

 

 
12 https://library.wmo.int/opac/doc_num.php?explnum_id=3854  
13 https://seea.un.org/  
14 Food and Agriculture Organization of the United Nations 
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1 Introduction 
The 2030 Agenda for Sustainable Development provides a framework for countries to determine 
how best to improve the lives of their people now, while ensuring that these improvements are 
sustained for future generations. The 2030 Agenda15 was adopted by all United Nations (UN) 
Member States in 2015, and includes 17 Sustainable Development Goals (SDGs) which are an urgent 
call to action by all countries to improve health and education, end poverty, reduce inequality and 
spur economic growth, while at the same time tackling climate change and preserving the terrestrial, 
aquatic and marine environment.  Within each of the 17 Goals there are ‘Targets’ (174 in total) 
which define the tasks required to achieve each Development Goal, and within each Target there are 
‘Indicators’ (231 unique Indicators in total16;) which are the measurable attributes to be monitored 
to determine progress towards achieving the 2030 Agenda.   

UN SDG 15 is ‘Life on Land’, which aims to ‘Protect, restore and promote sustainable use of 
terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land 
degradation and halt biodiversity loss’.  Target 15.3 aims to ‘By 2030, combat desertification, restore 
degraded land and soil, including land affected by desertification, drought and floods, and strive to 
achieve a land degradation-neutral world’.   

This report presents methods and guidance to calculate and interpret the sole indicator of Target 
15.3, SDG Indicator 15.3.1, which is the ‘Proportion of land that is degraded over total land area’.  
The United Nations Convention to Combat Desertification (UNCCD) is the custodian agency for SDG 
indicator 15.3.1, which was proposed by the Inter-Agency and Expert Group on SDG indicators 
(IAEG-SDGs) and adopted by the UN Statistical Commission in March 2017 to monitor progress 
towards achieving SDG Target 15.3.  

Version 1 of this Good Practice Guidance report (GPG) was published in 2017 and has been made 
available to all countries wishing to report on SDG Indicator 15.3.1 as a guide to the calculation, 
analysis and interpretation of the Indicator since that time. Indicator 15.3.1 was elevated to Tier I in 
November 2019, meaning that the ‘Indicator is conceptually clear, has an internationally established 
methodology and standards are available, and data are regularly produced by countries for at least 
50 per cent of countries and of the population in every region where the indicator is relevant’17, in 
part due to the availability of supporting analytical tools and methods such as the GPG. The upgrade 
to Tier 1 was granted after the first round of reporting, which culminated in early 2019 with the first 
global assessment of land degradation based on 123 country submissions and 40 estimates derived 
from global data sets18.   

1.1 The definition of land degradation 
The definition of land degradation for SDG Indicator 15.3.1 was adopted and is used by the 197 
Parties to the UNCCD and the IAEG-SDGs.  The definition is: ‘the reduction or loss of the biological or 
economic productivity and complexity of rain fed cropland, irrigated cropland, or range, pasture, 

 
15 https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf 
16 https://unstats.un.org/sdgs/indicators/indicators-list/ 
17 https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/ 
18 https://unstats.un.org/sdgs/report/2019/goal-15/ 
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forest and woodlands resulting from a combination of pressures, including land use and 
management practices’19.  Under this definition, the extent of land degradation for reporting on SDG 
Indicator 15.3.1 is calculated using its three sub-indicators which are:  

1. Trends in land cover  
2. Trends in land productivity 
3. Trends in carbon stocks (above and below ground), currently represented by soil organic 

carbon (SOC) stocks.  

The results of the degradation analysis for each of the sub-indicators are integrated using a one-out-
all-out (1OAO) method in which a significant reduction or negative change in any one of the three 
sub-indicators is considered to comprise land degradation.  Significant reductions can be identified 
using statistical criteria, or by a qualitative assessment of the magnitude of change, such as for Land 
Cover. 

This GPG provides details on how to calculate the extent of land degradation for reporting on SDG 
Indicator 15.3.1 according to the Tier I methods adopted by the UN Statistical Commission20.  While 
it is difficult for a single indicator to fully capture the state or condition of the land, the sub-
indicators are proxies to monitor the essential variables that reflect the capacity of the land to 
deliver ecosystem services. The Indicator is reported as a binary quantification (i.e., degraded/not 
degraded) based primarily, and to the largest extent possible, on comparable and standardized 
national official data sources.  

1.2 Version 2 revision of the GPG 
Version 2 of the GPG updates the datasets and methods recommended for calculating SDG indicator 
15.3.1, and responds to suggestions from 141 country parties reporting on the Indicator, collated via 
the 17th session of the UNCCD Committee for the Review of the Implementation of the Convention 
(CRIC) providing requests and suggestions to improve the GPG and Indicator calculation processes21.   

1 .2.1 Key concepts  remaining unchanged from Vers ion 1  

 Indicator 15.3.1 remains a binary calculation based on the three sub-indicators of Land 
Cover, Land Productivity and Carbon stocks as a minimum. 

 The Indicator remains calculated by integrating the sub-indicators using the 1OAO process.  
 SOC stock remains as the surrogate for the carbon stocks above and below ground sub-

indicator. 
 The international standards underpinning the assessment of each of the sub-indicators 

remain unchanged. 

1.2.2 Revisions  implemented in Vers ion 2 

 Additional guidance is provided on how to interpret Indicator 15.3.1 to support the 
achievement of Land Degradation Neutrality (LDN).  LDN uses Indicator 15.3.1 to measure 

 
19 United Nations Convention to Combat Desertification. 1994. Article 1 of the Convention Text 
http://www2.unccd.int/sites/default/files/relevant-links/2017-01/UNCCD_Convention_ENG_0.pdf  
20 https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf  
21 https://www.unccd.int/sites/default/files/sessions/documents/2019-05/ICCD_CRIC%2817%29_9-1904478E.pdf  
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the extent of degradation for target setting and progress monitoring.  Achieving LDN 
requires countries to implement actions to stabilize or reduce the extent of degraded land.  
Monitoring LDN requires a range of analytics in addition to the binary assessment of 
degradation provided by Indicator 15.3.1, some of which can be interpreted from the 
datasets and analytics presented here.  Other elements required for LDN, such as the trade-
off mechanism to achieve neutrality, are not discussed in this document. 

 References to key datasets relevant to each sub-indicator have been updated. 
 The methodology for the Land Cover sub-indicator has been revised to first consider the 

mechanisms of degradation to guide the determination of positive and negative land cover 
transitions.   

 Additional guidance is provided on stratifying the landscape to calculate one of the three 
metrics of the productivity sub-indicator - productivity performance - which compares local 
productivity levels between similar land units spatially.  The graphical representation of 
productivity performance has been revised to improve clarity. 

 Some additional detail is provided on assessing the relationship between a time series of net 
primary productivity (or surrogates for it such as a vegetation index calculated from 
remotely-sensed image data) and a time series of productivity that has been calibrated to 
minimize the effect of changes in moisture availability. 

 Comprehensive incorporation of the 2019 refinement of the Intergovernmental Panel on 
Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories into the 
Carbon Stock sub-indicator methods.   

 Additional guidance is provided on the process for identifying and reporting on false positive 
and false negative degradation assessments. 

 Guidance is provided on recalculation of the time series and baseline to enable different, 
new and/or improved datasets to be introduced as they emerge.  

1.3 The context of this GPG 
While the GPG is, at its core, a methodological document, it is important to note that it is also a key 
element of an overall strategy agreed upon by both data providers and end users at the national 
level, through the Group on Earth Observations (GEO) Land Degradation Neutrality (LDN) Initiative, 
commonly known as the GEO LDN Initiative.22 This strategy seeks to engage stakeholders ranging 
from data providers to end users at the national and sub-national levels in a process to ensure that:  

I. Minimum data quality standards are identified and adhered to by all data providers.  
II. Companion data analytics tools can be developed in a federated approach so that the 

methods and datasets can be used in a cohesive way to ensure that utility of Indicator 
15.3.1. 

III. Capacity can be developed to increase national ownership of all aspects of indicator 
development and reporting.  

This multilateral and inter-organizational approach ensures that the global methodological standards 
documented here are critically assessed by all relevant stakeholders.   

 
22 Group on Earth Observations Land Degradation Neutrality (GEO LDN) Initiative http://earthobservations.org/geo_ldn.php 
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These efforts are also working to ensure that the steps and algorithms used to calculate Indicator 
15.3.1 are translated into open-source code for software tools to support reporting.  The primary 
implementation of these methods is in Trends.Earth23, an open-source GIS plugin which countries 
have used to compute SDG Indicator 15.3.1 and its sub-indicators.  Trends.Earth makes it possible 
for end users to analyse estimates provided at the global level, compare these to national estimates, 
and then produce their own country estimates based on country-specific data and nationally 
determined assumptions, while employing the same standardized methodologies described in this 
GPG. These resources help countries adhere to global standards while taking end-to-end ownership 
of the process, even when local capacity for analysis may be limited. 

Through the working groups of the GEO LDN Initiative and a range of other aligned activities (see 
Section 1.4), additional potentially-relevant support tools that are inter-operational with 
Trends.Earth are being developed. These aim to broaden the utility of SDG Indicator 15.3.1 and its 
sub-indicators for environmental analysis and decision support at the global, national and sub-
national levels. This strategy has led not only to a high rate of reporting (141 countries reporting in 
201824), but also to a significant expansion of the larger innovation ecosystem interested in 
capitalizing on the potential impact these data sets can have.   

 

 

 

 

 
23 http://trends.earth/docs/en/ 
24 https://prais.unccd.int/  

Box 2. SEPAL for calculating SDG Indicator 15.3.1  

SEPAL[1] is a free and open source geospatial data processing platform that combines an easy-to-use GUI, 
powerful open-source software (e.g. Google Earth Engine, R, python, GDAL) and a cloud computing 
environment available to users anywhere in the world via their computer or mobile phone. SEPAL facilitates 
access to satellite imagery and processing algorithms allowing users to create their own data, analyses, and 
results. Custom pre-processing can be applied to optical and synthetic aperture radar (SAR) to create image 
mosaics, time series and multi-dimensional time series. This Analysis Ready Data can be used to classify land 
cover and create land cover change maps. Training data, collected within SEPAL or uploaded from another 
source, can be iteratively improved based on the classification output, which is run on the fly each time a new 
sample is added. SEPAL provides additional tools for classification and post-classification, such as object-based 
image analysis, morphological filtering and others. Complete land cover and land cover change maps can be 
assessed using the accuracy assessment tools available in SEPAL.  

A new module in SEPAL calculates SDG 15.3.1 and its sub-indicators, consistent with the methodology in the 
GPG. The SDG monitoring module in SEPAL utilizes Landsat and Sentinel data to estimate the indicator at a 
sub-national scale. Project scale monitoring using SDG 15.3.1 can provide consistent information across 
multiple scales making global, national, sub-national and project scale data comparable. The module, when 
finalized, will be made easily accessible to SEPAL users worldwide.  

[1] https://sepal.io/ 



 

Good Practice Guidance | SDG Indicator 15.3.1 5 

 

1.4 SDG Indicator 15.3.1 and Land Degradation Neutrality 
The LDN programme of the UNCCD strives to achieve the primary objective of SDG Target 15.3, 
which is ‘…to achieve a land degradation-neutral world’.  LDN is “a state whereby the amount and 
quality of land resources, necessary to support ecosystem functions and services and enhance food 
security, remains stable or increases within specified temporal and spatial scales and ecosystems”25.  

Based on the lessons learnt from a pilot project involving 14 countries26, in 2016 the UNCCD, in 
collaboration with multiple international partners, launched the LDN Target Setting Programme.27 
Since then, the programme has been supporting interested countries with their national LDN target 
setting process, including setting national baselines, evidence-based targets and associated 
measures to achieve LDN. By November 2020, 124 countries were participating in the LDN Target 
Setting Programme, over 80 of which had established and validated a baseline for the indicator.  

These efforts, coupled with a series of capacity building workshops which were implemented as part 
of a GEF-financed Global Support Programme and trained over 300 government representatives 
from 140 countries28, set the foundation for a first successful national reporting process to the 
UNCCD in 2018. The provision of clear methodological guidance, default data prepared in a globally 
consistent manner, and dedicated data analytic tools has helped countries report in an increasingly 
harmonized way while taking ownership of the process.29 Country data collected through the UNCCD 
national reporting process, including reporting on SDG Indicator 15.3.1 along with regional and 
global aggregates, were then submitted to the UN Statistics Division (UNSD) for inclusion in the SDG 
Report 2019. 

Global efforts to achieve LDN are also supported by both governments and Earth Observation (EO) 
organizations who are members and partners of the GEO, through their participation in the GEO LDN 
Initiative and other aligned activities striving to the improve the quality and availability of EO 
datasets for measuring and monitoring LDN and the SDGs.  The use of EO and geospatial information 
can significantly reduce the costs of monitoring the aspirations reflected in the Goals and Targets, 
and make SDG monitoring and reporting more achievable with the limited resources available to 
governments. These activities include the work of the Committee on Earth Observation Satellites 
(CEOS) Ad Hoc Team on SDGs, which focuses on four SDG Indicators including 15.3.130, the CEOS 
Open Data Cube platform31 based on freely available CEOS datasets, the GEO Earth Observation for 
SDGs program32, and the Tools4LDN initiative33. Beyond the SDG framework, end-users in developing 
countries and regions are also strongly invited to use these EO data to increase their capacity to 
acquire, analyse and utilise information for a broad range of policy-making purposes at a national 
scale. 

 
25 https://www.unccd.int/sites/default/files/sessions/documents/2019-08/3COP12_0.pdf 
26 https://knowledge.unccd.int/knowledge-products-and-pillars/ldn-target-setting-building-blocks/lessons-learned-14-pilot-4 
27 http://www2.unccd.int/actions/ldn-target-setting-programme 
28 https://www.unccd.int/sites/default/files/inline-files/report%20on%20the%20capacity%20building%20workshops.pdf 
29 https://www.unccd.int/sites/default/files/sessions/documents/2019-03/ICCD_CRIC%2817%29_2-1822319E.pdf 
30 http://ceos.org/ourwork/ad-hoc-teams/sustainable-development-goals/ 
31 https://www.opendatacube.org/ceos  
32 http://eo4sdg.org/wp-content/uploads/2018/09/EO4SDG_for_GEO.Highlights.Report.pdf 
33 https://www.tools4ldn.org/ 
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This GPG is the document of methodological reference providing a standardized and consistent 
approach for the monitoring of LDN, national reporting to the UNCCD and reporting on SDG 
indicator 15.3.1.  As the sole Indicator of Target 15.3, the extent of degraded land for assessing LDN 
is calculated using SDG Indicator 15.3.1. This GPG does not explicitly provide guidance on the 
assessment of LDN, which is addressed in other guidance documents developed for the Parties of 
the UNCCD.34  Moreover, because the number and maturity of activities supporting the achievement 
of LDN worldwide has evolved considerably since the production of GPG Version 1, this GPG version 
2 includes guidance on how data calculated for reporting on SDG Indicator 15.3.1 can be interpreted 
to inform LDN efforts. 

 
34 In September 2017, through decision 18/COP.13, the UNCCD Conference of the Parties endorsed the scientific conceptual framework for 
land degradation neutrality summarized in document ICCD/COP(13)/CST/2, and called upon Parties pursuing land degradation neutrality 
to consider the guidance provided by the scientific conceptual framework for land degradation neutrality and observe the principles 
summarized therein, taking into account national circumstances. Since that time, a number of other supporting guidance documents have 
been published which support country efforts to assess LDN and implement appropriate interventions designed to achieve or exceed LDN. 
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Box 3. The potential of SEEA Ecosystem Accounts to derive land degradation indicators 

The System of Environmental-Economic Accounting - Ecosystem Accounting (SEEA EA) (UN Statistics Division 
2020) is an integrated statistical framework for organizing biophysical information about ecosystems, 
measuring ecosystem services, tracking changes in ecosystem extent and condition, and linking this 
information to measures of economic and human activity. The SEEA EA consist of five core accounts: extent, 
condition, ecosystem services (in both physical and monetary units), and a monetary asset account. In 
addition, there are several connected thematic accounts, such as for carbon and biodiversity. The three sub-
indicators of SDG Indicator 15.3.1 and the approaches to the underlying spatial units, are, in principle, aligned 
with the SEEA EA framework, as summarized here based upon UN (2019). 

The extent account requires the delineation of areas within a country into mutually exclusive and collectively 
exhaustive spatial units that represent ecosystem assets. The ecosystem extent account change matrix (Table 
4.1 in SEEA EA, UN Statistics Division 2020) has the same structure as the land cover change matrix described 
in Figure 3-2 of this report, and can be used to report on the land cover change sub-indicator of SDG Indicator 
15.3.1. National ecosystem types must be linked to the 6 IPCC classes, or to an IPCCSX scheme (see Section 
3.2.2) and include a description of all possible transitions in terms of whether it constitutes degradation.  

The UNCCD definition of land degradation is also clearly aligned to that of ecosystem condition. The ecosystem 
condition account describes the quality of ecosystems and how they have changed during the accounting 
period, with respect to a reference condition, using a combination of relevant variables and indicators 
organized in a condition typology (see below, adapted from SEEA Table 5.1 of UN Statistics Division 2020).  

 

Both soil organic carbon (SOC) and net primary productivity (NPP) are reflected in condition accounts as 
chemical and functional state characteristics respectively. In addition, the SEEA EA also contains a thematic 
carbon stock account (section 13.4), which provides a comprehensive overview of the different types of carbon 
in the areas (e.g. geocarbon, biocarbon - above and below ground) and their change over time.  Due to the 
spatial nature of the SEEA, condition indicators are typically derived from underlying maps. While there are 
specifics to be worked through (e.g. resolution of the maps, alignment of reference year with UNCCD 
requirements), information from the condition account can be used to report on the SOC and land productivity 
sub-indicators of SDG Indicator 15.3.1.  

The SEEA EA defines ecosystem degradation as the decrease in the monetary value of an ecosystem asset 
(core account 5) over an accounting period that is associated with a decline in the condition of an ecosystem 
asset, thereby excluding ecosystem conversions which refer to changes in ecosystem extent. This differs from 
the physical UNCCD concept of land degradation that is defined through an overlay of the 3 sub-indicators.  

By arranging land degradation statistics in a format that is compatible with national statistical systems, it is 
possible to more readily associate trends in land degradation with economic statistics, particularly for the 
agricultural sector. By presenting this information alongside key socio-economic statistics on unemployment, 
poverty and population, decision-makers will get a better picture of where people may be most impacted by 
land degradation.  
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2 SDG Indicator 15.3.1: Proportion of land that is degraded over 
total land area 

2.1 Methodology 

The UNCCD reporting template includes the indicator and sub-indicators. The methodology for the 
indicator is universal, allowing countries to select the most appropriate datasets and national 
methods for estimating the sub-indicators and determine the most suitable pathway for deriving the 
indicator. In this regard, this GPG helps countries access and interpret a wide range of data sources 
for the sub-indicators, including EO and geospatial information, whilst ensuring national ownership. 
At the national level, the institutions that specialize in environmental data are able to work 
synergistically with National Statistics Offices (NSOs). Thus, the use of the UNCCD’s national reports 
provides a practical and harmonized approach by which countries can report on the indicator, 
beginning in 2018 and every four years thereafter.35  

2 .1.1 Rationale 

By analysing changes in the sub-indicators in the context of local assessments of the climate, soil, 
land use and any other factors influencing land conditions, national authorities can identify which 
land units are to be classified as degraded, sum the total, and report on the indicator providing the 
appropriate justification (as described in Section 2.2).  The indicator is derived from a binary 
classification of land condition (i.e., degraded or not degraded) based primarily, and to the largest 
extent possible, on comparable and standardized national official data sources. However, due to the 
nature of the indicator, EO and geospatial information from regional, national and global data 
sources can play an important role in its derivation, subject to validation by national authorities in 
conjunction with ground measurements and assessments wherever possible.  

2.1.2 Calculating the Ind icator 

The indicator is calculated by evaluating changes in the sub-indicators over time, to determine the 
extent of land that is degraded over total land area. The extent of degradation measured in each of 
the reporting periods is compared to the extent of degradation measured in the baseline period to 
identify whether this area is increasing or decreasing over time. The baseline sets the benchmark 
extent of degradation against which progress towards achieving SDG Target 15.3 and LDN is 
assessed.  

As a result, the 1OAO principle is applied in the method of computation where changes in the sub-
indicators are depicted as:  

(i) Positive or improving; 

(ii) Negative or declining; or  

(iii) Stable or unchanging. 

 
35 In September 2017, the UNCCD governing body (196 countries that make up the Conference of the Parties) requested the UNCCD 
secretariat, as the custodian agency for Sustainable Development Goal indicator 15.3.1, to use the information submitted to it by Parties in 
their national reports that is relevant to the implementation of the 2030 Agenda for Sustainable Development as a contribution to the 
overall follow-up and review by the High-level Political Forum on Sustainable Development. 
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If one of the sub-indicators is declining or negative (or stable when degraded in the baseline or 
previous reporting period) for a particular land unit, then it may be considered potentially degraded 
subject to validation by national authorities (and see Section 2.2.2). 

In practical terms, for the purposes of calculating the Indicator, tracking change in the extent of 
degraded land is a three-step process:  

1. Calculate the extent of degradation in the baseline period (t0) from 1 January 2000 to 31 
December 2015.  This sets the benchmark against which progress towards achieving SDG 
Target 15.3 is assessed in each of the reporting periods.   

2. Calculate the extent of degradation in the reporting period (tn), which indicates the recent 
extent of degraded land.   

3. Calculate the change in extent of degradation between the baseline and reporting periods.   

Each sub-indicator, and the metrics used to define them, may be calculated using a subset of the 
baseline period depending on the requirements of the statistical methods implemented for their 
calculation.  Each reporting period considers a unique set of years extending up to the reporting 
date.   

For both the baseline and reporting periods, the extent of land that is degraded is derived from a 
quantification and assessment of time series data for all land units in each of the sub-indicators. 
National authorities report the Indicator for the baseline and subsequent reporting periods by 
summing the area where changes in the sub-indicators are considered to indicate new degradation, 
and areas identified as degraded in previous assessments that remain degraded (i.e. have not 
improved to a non-degraded state) in this reporting period.  Land classified as degraded will retain 
that status unless it improves relative to the baseline.  

The sub-indicators are then combined using the 1OAO process to determine the Indicator, which is 
the extent of land that is degraded in hectares (ha) represented as a proportion of the total land 
area.  Although the indicator will be reported as a single figure, it can be spatially disaggregated by 
sub-indicator, land cover class or other policy-relevant units, which may assist in interpreting the 
drivers and mechanisms of land degradation for each land unit.   

The method of computation for SDG indicator 15.3.1 is illustrated in Figure 2-1. Detailed methods for 
calculating the extent of degradation in the baseline and reporting periods for each of the sub-
indicators are presented in Chapters 2 to 5 of this report. 
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Figure 2-1. Steps to derive the indicator from the sub-indicators where ND is not degraded and D is degraded. 

 

We define Pn as the proportion of land that is degraded at time tn since the baseline period t0. Pn is 
calculated by dividing the total area degraded A(Degraded)n at tn, by the total national land area 
A(Total) including surface water extent.  

Where possible A(Degraded)n  should be reported specifically for each land cover class i and is made 
up of three components: 

1. Areas of land that have persisted in a degraded state since the baseline period 
A(persistent)i,n,  

2. Areas that have degraded since the baseline period A(recent)i,n  
3. Areas that have improved from a degraded state to a non-degraded state wince the baseline 

period A(improved)i,n.  

The total area of degraded land for class i at time n is calculated as follows: 

 

 
Equation 2-1 

Where  is reported in hectares; 

The proportion of land cover type i that is degraded is then given by: 

 

Equation 2-2 

The total area of land that is degraded over total land area is the accumulation across the all land 
cover classes within the reporting period n is given by: 

 

Equation 2-3 
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Where 

 

The total proportion of land that is degraded over total land area is given by: 

 

Equation 2-4 

Note that once the indicator has been calculated, the data and map products generated during this 
process can be used to monitor Indicator 15.3.1 and also in the LDN planning process. This would 
likely involve an integration of land degradation status (an assessment of degradation) and LDN 
status (and assessment of significant change), as suggested in the Conceptual Framework for Land 
Degradation Neutrality36 

2 .1.3 Data sources 

2.1.3.1  Default  datasets  

Global default data on the three sub-indicators is available from a range of existing sources (e.g., 
databases, maps, reports), including participatory inventories of land management systems as well 
as remote sensing data collected at the national level. The aim of this data provision is solely to 
assist countries in complementing and enhancing national data, subject to validation and reporting 
by national authorities (decision 22/COP.1137). However these datasets may be the most 
comprehensive and detailed available for some countries.  A comprehensive inventory of all data 
sources available for each sub-indicator is contained in the relevant sub-indicator chapters of this 
report.   

Table 2-1 shows the default global datasets that were provided by the UNCCD for calculating 
Indicator 15.3.1 for the 2018 reporting period, along with some alternative datasets that have 
become available since then, and may be preferable in some cases.  For Land Cover, the default 
European Space Agency’s Climate Change Initiative Land Cover (ESA CCI-LC) full time series has been 
extended to include data for 2016, 2017, 2018 and 201938, and while the updated alternative 
Copernicus Global Land Service Land Cover at 100m (CGLS-LC100) data commenced only in 2015, it 
provides improved spatial resolution and a range of analytical improvements over the CCI-LC.   

For assessing land productivity, the Land Productivity Dynamics (LPD) of the Joint Research Centre 
(JRC) of the European Commission product remains the only global product that classifies 
observations of plant productivity into classes indicating the level and trend over time, as far as the 
authors are aware.  Trends.Earth enables these classes to be calculated from other time series 
datasets, including the MODIS MOD13Q1 250m vegetation index product.  The MODIS instruments 
were launched in 1999 and 2002 with a designed life of 6 years, but they are expected to continue to 
provide data beyond 202039.  Alternative near-global and freely-available time series observations 

 
36 https://knowledge.unccd.int/publication/ldn-scientific-conceptual-framework-land-degradation-neutrality-report-science-policy  
37 https://www.unccd.int/sites/default/files/sessions/documents/2019-08/22COP11_0.pdf  
38 http://maps.elie.ucl.ac.be/CCI/viewer/download.php  
39 https://nsidc.org/nsidc-monthly-highlights/2017/08/modis-viirs-building-time-series  
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that can be processed into vegetation indices include Landsat Analysis Ready Data (ARD)40 and the 
Sentinel2 MultiSpectral Instrument (MSI) data41, which can be processed using the free SNAP 
toolbox42.  These can then be ingested into Trends.Earth to calculate land productivity degradation 
consistent with the GPG. 

The SoilGrids250m default data for SOC have been significantly upgraded to version 2 (released in 
May 2020) and now include pixel-scale uncertainty estimates.  A potential alternative dataset is the 
Global Soil Organic Carbon (GSOC) maps, which are developed by the Global Soil Partnership (GSP) 
of the FAO in conjunction with an extensive user engagement process.  The GSOC maps show SOC 
stock in the upper 30cm of the soil profile maps at 1km resolution, and have been developed under 
GSOC’s mapping Guidelines to ensure global comparability.  A very recently developed new data 
source that may be of interest is Soils Revealed, which implements the methods described in version 
1 of this GPG to show historic, recent and future SOC stocks and stock change globally at 250m 
resolution between 2000 and 2018.  At the time of writing it is not clear whether there are plans to 
make these datasets downloadable.   

Table 2-1. Global default datasets for each of the sub-indicators, and potential possible alternatives. 

Sub-indicator Default data provided for 2018 
reporting 

Alternatives 

Land Cover ESA-CCI-LC43 300m annual global 
from 1992 to 2019 

Copernicus CGLS-LC100 (Collection 3)44 100m 
annual global from 2015 to 2019 

Land productivity JRC Land Productivity Dynamics 
(LPD)45 1km annual global from 
1999-2013 

MODIS vegetation index (MOD31Q1, 
MYD13Q1)46 250 m global, 16-day integration 
period since 2000 

Copernicus Global Land Service NDVI,47 1km 
annual global since 1998. 

SOC ISRIC SoilGrids250m48 250 m 
global spatial predictions for 
selected soil properties at six 
standard depths 

ISRIC SoilGrids250m version 2 (de Sousa et al. 
2020), updated global product at 250 m spatial 
resolution with spatial uncertainty. 

FAO Global Soil Organic Carbon Map49, global 
and national maps of SOC stocks at 1 km 
spatial resolution; latest version 2019. 

*https://soilsrevealed.org/  

 

 
40 https://glad.geog.umd.edu/ard/glad-landsat-ard  
41 https://sentinel.esa.int/web/sentinel/sentinel-data-access  
42 https://step.esa.int/main/download/snap-download/  
43 https://climate.esa.int/en/projects/land-cover/   
44 https://land.copernicus.eu/global/products/lc  
45 https://wad.jrc.ec.europa.eu/landproductivity  
46 https://modis.gsfc.nasa.gov/data/dataprod/mod13.php  
47 https://land.copernicus.eu/global/products/ndvi  
48 https://www.soilgrids.org/ 
49 http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map/en/ 
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2.1.3.2  Data Qual ity Standards 

Global default datasets are provided to assist countries that may not have the appropriate datasets 
or capacity to calculate the sub-indicators at national scale. The SDG process emphasizes a 
preference for nations to develop their sovereign datasets, or to validate available datasets for 
accuracy in their national context, and it is hoped that data availability and processing capacity will 
improve in many countries to enable them to use their national datasets.  There is therefore a need 
to support countries to identify datasets that are suitable for reporting Indicator 15.3.1 and LDN at 
national and sub-national scales.   

This GPG provides guidance on how to calculate each of the sub-indicators from any relevant dataset 
of suitable quality.  The availability and quality of EO and other spatial data suitable for calculating 
the sub-indicators is constantly improving, and rather than recommend specific datasets, a more 
adaptable approach is to define the data quality attributes that make a dataset suitable for use in 
calculating the sub-indicators.  The data quality standards can be used to interrogate the suitability 
of any existing or future dataset for calculating Indicator 15.3.1 at finer scales. 

In early 2020 the GEO LDN Initiative conducted a series of interviews and workshops to determine 
end user and data provider perspectives on data quality standards (DQS) for calculating Indicator 
15.3.1 and LDN.  The result of this process is a report (the DQS report50) describing a series of agreed 
minimum DQS for a range of data attributes (Table 2-2).   

Some of these standards are aspirational, identifying key data needs for assessing SDG indicator 
15.3.1 as a guide for data providers, particularly for supporting national scale assessments.  At the 
time of writing none of the default global datasets meet all of these standards, such as the 100 m 
minimum grid cell size for SOC datasets.  On small islands, for example, a grid cell size of 100 m may 
not be sufficient to enable accurate assessment.   

In addition to the standards themselves, the DQS report also presents four decision trees that 
visually guide end users through the process of determining the suitability of a dataset for use in 
calculating Indicator 15.3.1, its sub-indicators and LDN, and provides pointers to additional 
information sources including this report, shown as pale blue pentagons.  

The first decision tree guides potential users exploring the need and capacity to develop and/or use 
EO data at national and sub-national scales (Figure 2-2).  If the production of datasets at this scale is 
not of interest or not possible, then countries may simply choose to use the global default datasets, 
noting that the default datasets are likely to be less representative of local conditions.  To achieve 
full coverage of larger areas it may be necessary to create mosaics of images with a scene size 
smaller than the area of interest.  Creating a mosaic or compositing of images is a highly technical 
task, and the steps required may vary depending on the datasets being joined and the processing 
tools being used to create the mosaic.  While the DQS report indicates that guidance on this process 
can be found in this GPG, a detailed description of how to mosaic images is beyond the scope of this 
report.  Readers are recommended to source this guidance from resources related to the image data 
sets and software tools being used.  Further links are provided to the other DQS decision trees 

 
50 http://earthobservations.org/documents/ldn/20200703_GEOLDN_TechnicalNote_FINAL_SINGLE.pdf  
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included in this report for the analysis of land cover change (Figure 3-4), land productivity (Figure 
4-4) and SOC (Figure 5-1).   

Table 2-2. Summary of recommended minimum data quality standards (adapted from Table 5 of the DQS report) 

Topic Minimum quality standard Further information 

Grid cell size 100 m DQS report 

Temporal coverage Specific to sub-indicator Chapters 3, 4 & 0 of this report 

Analysis ready data 
(ARD) 

Use ARD CEOS Analysis Ready Data 

Land cover classes User decision Section 3.2.2 of this report 

Land cover change 
assessment 

Accuracy > 85% Section 3.2.3 of this report;  
ISO 19144-2:2012(en), Geographic information - 
Classification systems — Part 2: Land Cover Meta 
Language (LCML) 

Lagend translation Land Cover Meta Language 
(LCML) 

Chapter 3 of this report 

Growing season 
definition 

Proportional Section 4.2.4.1 of this report 

Productivity Index Normalised Difference 
Vegetation Index (NDVI) 

Section B.1.1 of this report 

Climate 
calibration/normalisation  

Use uncalibrated data Section B.2 of this report 

Linking time series Linear regression Section B.4 of this report 

SOC data uncertainty Pixel-based Section 5.2.6.3 of this report 

Harmonise and compare 
indices 

Report change Chapter 6 of this report 

Soil inventory update 
period 

10 years DQS report 
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Figure 2-2.Decision tree to determine the suitability of national and sub-national datasets for calculating Indicator 15.3.1 
(GEO-LDN Initiative 2020). Note that Working Group 1 is one of three Working Groups in the GEO LDN Initiative, focussing 
on Capacity Development. See link in reference for more details). 
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2.2 Reporting degradation 

2.2.1 Data f lows and val idation  

Multiple decisions by the UN Statistical Commission have stressed that official statistics and data 
from national statistical systems constitute the basis needed for the global SDG indicator framework. 
In cases where custodian agencies see a need to adjust or estimate country-specific values to ensure 
compliance to internationally agreed concepts, definitions or classifications, to fill data gaps or to 
harmonize data from different national official sources, they are requested “to consult with 
concerned countries to produce and validate modelled estimates before publication”.51 The IAEG-
SDG has prepared a series of documents defining “guidelines of how custodian agencies and 
countries can work together to contribute to the data flows necessary to have harmonized statistics” 
for monitoring the SDG targets.52  

For SDG Indicator 15.3.1, the data flows and validation mechanism are unique as they leverage the 
UNCCD national reporting and review process. 

In the absence of, to enhance, or as a complement to national data sources, the UNCCD facilitates 
national reporting through the provision of default data derived from global data sources to be 
interpreted and validated by national authorities. The most comprehensive validation approach 
involves the use of national, sub-national or site-based indicators, data and information to assess the 
accuracy of the sub-indicators derived from these regional and global data sources. This could 
include a mixed-methods approach which makes use of multiple sources of information or combines 
quantitative and qualitative data, including the ground-truthing of remotely sensed data using 
Google Earth images, field surveys or a combination of both.  

Every four years beginning in 2018, national authorities (the “main reporting entity”) submit data on 
the indicator and sub-indicators to the UNCCD as part of their national reports following a standard 
format. Ideally, the reports should include the original data and reference sources, descriptions of 
how these have been used to derive the indicator and sub-indicators, with additional detail provided 
on areas identified as ‘false positive’ or ‘false negative’ errors in the identification of degradation.  

Eligible countries receive financial and technical assistance to help them prepare their national 
reports from the UNCCD and its partners. In 2018, this support was provided through a Global 
Support Programme funded by the Global Environment Facility, implemented by the UN 
Environment Programme and managed and executed by the Global Mechanism of the UNCCD.53 
Additionally, countries have received dedicated financial resources to be used at the country level to 
support coordination among national institutions, acquire human resources if required, and ensure 
timely submission of the national reports, through a GEF-funded Umbrella Project implemented by 
UN Environment Programme. Under this programme, the UNCCD has provided technical 
backstopping and capacity development support to countries. Regular contacts between the main 
reporting entity and UNCCD secretariat via a help desk system, and through regional/sub-regional 
workshops, have formed part of this support. Similar financial and technical assistance is expected to 

 
51 https://undocs.org/A/RES/71/313 
52 https://unstats.un.org/sdgs/iaeg-sdgs/data-flows/ 
53 https://www.unccd.int/sites/default/files/sessions/documents/2019-07/ICCD_CRIC%2818%29_6-1910512E.pdf 
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be provided for future reporting cycles with the aim of further strengthening the capacities of 
countries for monitoring and reporting.  Once received, national reports undergo a review process 
by the UNCCD to ensure the correct use of definitions and methodology, enable data adjustments 
when needed, and contribute to building national capacities.  

Since national data and the information used to report on SDG Indicator 15.3.1 generally come from 
outside the NSOs,  the UNCCD consults with the NSOs and requests them to review and validate the 
data submitted by their country as part of their national report, prior to submitting the data to the 
UNSD. For those countries that have not submitted a national report, the UNCCD provides the NSOs 
with national estimates derived from global data sources for review and validation.  

Once the countries have signed off the data, the UNCCD submits country data, as well as sub-
regional, regional and global aggregates to the UNSD for publication in the SDG Report and Global 
Database. 

By leveraging an already established reporting mechanism, this data flow and validation mechanism 
increases the efficiency with which UNCCD can gather data from countries. In addition, since the 
definitions and methodologies for reporting on SDG Indicator 15.3.1 are aligned with those adopted 
by the UNCCD, the reporting burden on countries and the need for harmonization/validation of the 
indicator values is reduced.   

 

 
Figure 2-3. Data flow for SDG Indicator 15.3.1 (Illustration adapted from UN Water, Data flow for SDG 6, available at: 
https://www.sdg6monitoring.org/activities/roles-and-responsibilities/) 

2.2.2 Ident ifying false posit ives and false negat ive s 

Version 1 of the GPG considered a range of land cover scenarios in which, using the 1OAO 
framework, change in the degradation status of the sub-indicators might result in a counterintuitive 
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degradation determination.  The example in Version 1 described woody weed invasion of a 
grassland, which may raise the apparent plant productivity even though the outcome in terms of the 
change in land condition would normally be considered to be negative.  In fact, the 1OAO deals with 
this situation correctly provided there is sufficient land cover information to identify a negative 
change in the land cover sub-indicator, which would result in this area being identified as degraded. 
A more challenging example is where woody weeds are removed as part of a remediation process, 
causing a reduction in apparent NPP.  This would normally lead to an indication of degradation even 
though the intention is to restore degraded lands.   

In these situations, countries have the option to identify areas of ‘false negative’ degradation, in 
which the outcome of the 1OAO process has incorrectly resulted in an area being identified as 
degraded.  A similar opportunity is also available to identify areas of ‘false positive’ degradation, 
where the 1OAO process has incorrectly indicated that an area is not degraded even though the 
change in land condition is considered to be sufficiently negative to qualify as degraded in the 
context of Indicator 15.3.1.   

Readers are referred to Sims et al. (2020), which provides more guidance on how to address false 
positives and false negatives for reporting on Indicator 15.3.1 and LDN, including an interpretation 
matrix to guide countries in labelling areas where the outcomes of the 1OAO process appear 
counterintuitive.  Figure 2-4 shows a degradation interpretation matrix that can be used with any of 
the sub-indicators. The quantitative Land Productivity and SOC sub-indicators should be interpreted 
using the ‘Increase’ and ‘Decrease’ y-axis labels. As a typically categorical description of a complex of 
biophysical features, it can be difficult to rank land cover types to identify transitions that lead to an 
‘increase’ or ‘decrease’ in condition, hence we recommend the ‘Positive’ and ‘Negative’ y-axis labels 
for use with the Land Cover sub-indicator as opposed to the more intuitively quantitative alternative 
of Increase and Decrease.   

The interpretation matrix is underpinned by a conceptual model that perceives land as a socio-
ecological system (a coupled human-natural system); hence, labelling a land unit as degraded 
requires a synergy of utilitarian (human-driven) and ecological (ecosystem function and structure) 
views. The y-axis indicates the direction of change in the sub-indicator: either a decrease, no change 
or an increase for land productivity or SOC stocks, or in the case of land cover, a negative change, no 
change or a positive change.  The x-axis is the desirability, which reflects the interpretation of 
whether the condition of the area in question is desirable or undesirable at the time of assessment.  
Desirability might be determined following consideration of national development objectives and/or 
in consultation with local stakeholders, and should be justified in the national reports.  
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Figure 2-4. Generic degradation interpretation matrix for any sub-indicator of Indicator 15.3.1. The ‘Increase’ and 
‘Decrease’ y-axis labels should be used for the Land Productivity and SOC sub-indicators, and the ‘Positive’ and ‘Negative’ 
labels for Land Cover.   

Sectors of the interpretation matrix where the relationship between sub-indicator levels and the 
interpretation of condition may be counterintuitive are shown in yellow, with possible false positives 
in the upper left sector, and possible false negatives in the lower right. In these cases, the 
degradation interpretation matrix reminds countries of their opportunity to examine the drivers and 
pressures of change in land condition to inform the degradation decision-making process. Countries 
can then assess whether to label these areas as degraded or not in their maps and other reporting 
documents.  

The Driver-Pressure-State-Impact-Response (DPSIR) ‘causal framework’  presents an iterative and 
hierarchical process to identify the impacts of land degradation (changes in the provision of services 
to humans and the environment), the drivers (broad categories of factors that influence the 
direction of ecosystem change (Oesterwind et al. 2016), and pressures (land use and management 
choices) leading to the degradation, and the appropriate responses.  
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Figure 2-5.Causal framework for identifying drivers and pressures leading to land condition change, and identifying 
appropriate human responses. From Orr et al. (2017) & Cowie et al. (2018) 

In the context of the LDN causal framework (Figure 2-5), the interpretation matrix (Figure 2-4) 
principally supports decisions on identifying the degradation state, which underpins the decision to 
initiate responses to address land degradation. The inclusion of this process in determining 
degradation state could support an improved understanding of land degradation at specific locations 
using ecological, socio-economic and policy knowledge through multi-stakeholder engagements, 
which may in turn lead to improved LDN outcomes at larger spatial scales and over longer time 
periods.   

In areas where a false positive or false negative degradation outcome is identified (the upper left 
and lower right quadrants of the interpretation matrix, respectively), the decision to reinterpret the 
outcome of the 1OAO process should be justified in the report. Relevant supporting materials may 
include documentation of the methods and objectives of activities that have led to the false positive 
or negative, evidence of the extent over which these activities have been implemented, a review of 
the socio-economic and biophysical drivers and pressures influencing land degradation in the area 
using the DPSIR causal framework, a plan for, or statement of, future activities to reduce land 
degradation based on the DPSIR review, and a description of the intended land condition when the 
program of works is complete. 
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2.3 Comments and Limitations 
The assessment and quantification of land degradation is generally regarded as context-specific, 
making it difficult for a single indicator to fully capture the state or condition of the land. The sub-
indicators are proxies to monitor the essential variables that reflect capacity to deliver land-based 
ecosystem services. Nevertheless, the ultimate determination by national authorities of the extent 
of degraded land should be contextualized with other data and information for ground-based 
verification. For slow changing variables such as SOC, reporting every four years may not be practical 
or offer reliable change detection for many countries. The ability to interpret changes in more detail 
and at finer time steps is increasing, however, via improved modelling measurements at the national 
level, such as from WorldSoils54, iSDAsoil55 the FAO’s GSP56 and others. 

While access to remote sensing imagery has greatly improved in recent years, there is still a need for 
essential historical time series that are currently only available at coarse to medium resolution. 
Through the efforts of aligned initiatives including the CEOS Ad Hoc Team on SDGs57, and feedback 
to data providers from the UNCCD in response to identified needs in national reports, the 
expectation is that the availability of high-resolution, locally-calibrated datasets will increase in 
future.  There is also a strong need to develop national capacities to process, interpret and validate 
geospatial data, which is being supported through Working Group 1 of the GEO LDN Initiative and 
capacity building training workshops for Trends.Earth.   

 

 
54 http://www.world-soils.com/ 
55 https://www.isda-africa.com/isdasoil/ 
56 http://www.fao.org/global-soil-partnership/en/ 
57 http://ceos.org/ourwork/ad-hoc-teams/sustainable-development-goals/ 
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3 Land Cover and Land Cover Change 

3.1 Executive Summary 

Land degradation for the SDG 15.3 target is defined as ‘the reduction or loss of the biological or 
economic productivity and complexity of rain fed cropland, irrigated cropland, or range, pasture, 
forest and woodlands resulting from a combination of pressures, including land use and 
management practices’. The intention of the SDG 15.3.1 land cover sub-indicator is to identify where 
degradation has occurred specifically as a result of land cover change.  

3.1.1 Role and calculat ion of  the sub- indicator  

The guidance given in this chapter is designed to promote a consistent and objective approach for 
reporting land degradation as indicated by land cover changes. The following good practice 
principles are described to guide the development of a national method for computing the land 
cover change sub-indicator. 

 Identify key degradation processes that should be included in the country’s assessment of 
land degradation. 

 Select a land cover legend that allows key degradation processes to be monitored. 
 Generate a transition matrix that specifies land cover changes as being either degradation, 

improvement or neutral transitions. 
 Assess available data that can be used to map the legend classes over the total land area for 

the country and be updated and used for reporting at least every 5 years. An assessment 
should include documenting the source data, any pre-processing, the classification 
algorithm, and the accuracy assessment procedure. 

 Determine the baseline extent of land cover degradation for assessing SDG Target 15.3 and 
LDN. 

 Generate reports of land degradation based on an assessment of change using the same 
data and legend as the baseline period. 

3.1.2 Changes from version 1 of the GPG 

Version 1 of the land cover and land cover change sub-indicator chapter indicated that the six IPCC 
land cover classes were the preferred basis for reporting. This was to support consistency between 
national reports. However, in some cases, important degradation processes may not be detectable 
by monitoring these six broad IPCC classes. So in this revision there is a greater focus on the 
identification of important degradation processes, and the use of an appropriate legend so that 
degradation can be more easily monitored.  

In some cases, countries will not be in a position to produce land cover products in line with the 
reporting cycle for SDG 15.3.1 and with a legend that is more detailed than the IPCC classes. In this 
case the IPCC legend is the default.  

However, when a more detailed land cover legend is used, the number of possible transitions 
increases exponentially with the number of classes. Thus, to minimise complexity, only those classes 
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that are important in monitoring land degradation should be used for reporting, and where possible 
classes should be aggregated using the FAO’s Land Cover Classification System (LCCS) hierarchical 
structure. Nevertheless, land cover change at the level of the IPCC classes should be included in 
annual reporting even if a more detailed legend is used.  

3.1.3 Interpretat ion and further work  

1. Degradation identified using the land cover and land cover change sub-indicator should not be 
interpreted as comprehensive. The land cover and land cover change sub-indicator is 
supplemented by other sub-indicators that may be more appropriate, less-ambiguous or less 
prone to error than identification using land cover change. 

2. Links between land cover change and degradation can be subjective. Degradation processes 
that are appropriately detected and monitored using the land cover and land cover change sub-
indicator should be the subject of broad discussion and more detailed guidance in the future. 

3. A review of national, regional and global land cover products is now included as an appendix. 
The set of products relevant to SDG 15.3.1 will change over time and regular review of new 
products is advisable. 

3.2 Methodology 

This chapter sets out guidance for national authorities to implement measurement, validation and 
reporting of land degradation processes associated with land cover change. The guidance is designed 
to promote a consistent and objective approach for any reporting period. The following are good 
practice principles to guide the development of a national method of computation for the land 
cover sub-indicator.  

 Identify key degradation processes that should be included in the country’s assessment of 
land degradation. 

 Select a land cover legend that allows monitoring of key degradation processes that are 
detectable using land cover change. 

 Generate a transition matrix that specifies land cover changes as being either degradation, 
improvement or neutral transitions. 

 Assess available data that can be used to map legend classes over the total land area for the 
country and be updated and used for reporting. An assessment should include documenting 
the source data, any pre-processing, the classification algorithm, and the accuracy 
assessment procedure. Note that it may not be possible to map some legend classes due to 
limitations of available data. In such cases, other sub-indicators may be more appropriate for 
monitoring the specific degradation process. 

 Determine the baseline extent of land cover degradation for assessing SDG Target 15.3 and 
LDN.  

 Generate reports of land degradation based on an assessment of change using the same 
data and legend as the baseline period. 

Each of these principles is described in detail in the following sub sections. 
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3.2.1 Ident ifying key degradat ion processes  

The intention of SDG indicator 15.3.1 is to monitor the proportion of land degraded within a country. 
While the land cover change detection methodology and sub-indicator must be suitable to support 
an assessment of the proportion of land degraded, comprehensive land cover mapping is not the 
primary intention of this methodology. 

As a basis for objective and consistent reporting, it is good practice to state the key degradation 
processes relevant to a country and to create a table of these processes prior to defining a land 
cover legend. Key processes might include deforestation, urban expansion, loss of soil fertility. Some 
of these processes may be detectable through analysis of land cover change. Others may require a 
different sub-indicator, and some may be detectable using multiple indicators. For those processes 
that may have an impact on land cover, it is good practice to include possible starting and ending 
land cover classes as shown in Table 3-1.  

Table 3-1. Example of processes that may be identified by a country and the corresponding land cover transitions. Note that 
these are simplistic examples and attributing a change in state to degradation requires careful assessment at the national 
scale in the context of the definition of land degradation given in Section 1.1. 

Degradation 
process 

Likely detectable 
using Land Cover 
Change 

Starting Land Cover state Ending Land Cover state 

Urban expansion  Yes Grassland, cropland, other land Settlements 

Deforestation Yes Forest land Grassland, cropland, settlements 

Vegetation loss 
(other)  

Yes Forest land, grassland, cropland Other land 

Inundation Yes Vegetated, settlements, bare soil Wetland 

Woody 
encroachment 

Yes Wetland, grassland Forest Land 

Wetland 
drainage 

Yes Wetland  Grassland, cropland, settlements, 
other land 

Soil Erosion No - - 

Invasive species 
encroachment 

No - - 

Loss of soil 
fertility 
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3.2.2 Select  a Land Cover Legend 

In order to support the identification and assessment of land cover transitions, a set of land cover 
classes must be selected as a legend to classify the national land cover. This legend must be: 

- Competent for capturing the degradation transitions identified as significant; 
- Usable, such that available observational data can distinguish between the classes in the legend; 
- Exhaustive, such that the entire land area of the country can be attributed to classes from the 

legend and monitored through time..  

The six classes in the IPCC land use change legend (Penman et al. 2003) are used for aggregate 
reporting of the SDG 15.3 target, and therefore provide a minimum or default legend. However, 
there are some degradation processes that are not easily captured with reference to the IPCC 
legend, so national authorities should consider extending this in order to capture important land 
degradation processes occurring in their country, taking into account these three criteria. For 
example,  Table 3-2. shows a (notional) legend devised to include start and end classes to allow 
specific degradation processes to be monitored. IPCCSX specializes the IPCC classification scheme 
and can still be generalised to IPCC classes for the purpose of aggregated reporting.  

Table 3-2. An alternative land-cover legend (notional). Note that some classes in the IPCC legend need to be specialized in 
the notional IPCCSX legend to ensure important degradation processes can be captured, while others may remain 
unchanged. 

IPCC IPCCSX 

Forest Land Native forest 

Exotic forest 

Grassland Native grassland 

Improved pasture 

Managed parkland (incl. sports grounds) 

Cropland Plantation 

Cereals 

Horticulture 

Wetlands Inland wetland – permanent 

Inland wetland – ephemeral  

Coastal wetland 

Settlements  Settlements 

Other Land Other Land 

 

A clear and unambiguous definition of land cover classes is imperative in order to ensure that 
changes can be identified. Land cover classes from national schemes should be aligned with existing 
Land Cover Meta Language (LCML) based classifications wherever possible. FAO provides software 
tools to help in harmonising non-LCML classes,  though these tools require users to have some prior 
understanding of the object-based structure of the meta-language. While LCML provides the most 
structured approach to class definition, Di Gregorio & Jansen (2000) also provide guidance on how to 
translate from conventional descriptive class definitions to a LCML-based schema.  
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Existing general classification schemes might guide the development of a national scheme and 
legend. The SEEA (UN, 2012) defines a set of 14 land cover classes for the description of land cover. 
FAO Global Land Cover-SHARE (GLC-SHARE) simplifies this to 11 classes, aggregating the croplands 
and the water bodies into single classes (Latham et al. 2014). A broad alignment of GLC-SHARE to the 
‘dichotomous’ part of the LCCS (Di Gregorio and Jansen, 2000) was provided by Latham, which is 
adapted in Figure 3-1 to include both SEEA CF and GLC-SHARE numbering.  

 
Figure 3-1. The System for Environmental and Economic Accounting (SEEA) Central Framework (CF) Land cover classification 
(pale blue shading) and UN FAO Global Land Cover Share (GLC-SHARE) (purple outlines and codes) in an approximate 
alignment to the Land Cover Classification System (LCCS) hierarchy (Di Gregorio & Jansen, 2000) (diagram adapted from 
Latham et al. 2014) 

In contrast, the ESA Climate Change Initiative developed a typology of 22 land cover classes (ESA CCI-
LC). This is based on the FAO LCCS class definition methodology, but oriented to the Plant Functional 
Types used in Earth System Models. Notice that while CCI-LC differentiates between several tree 
cover types, it merges all water-body classes. This matches the distinctions required for Earth System 
Models, but they might not be easily detectable using most remote-sensing data. Table 3-3. maps all 
the schemes mentioned to the broad classification from the IPCC legend.  
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Table 3-3. Mapping between land cover classes used in various legends. Table rows show how all legends can be 
harmonised to IPCC classes. The SEEA and GLC Share provide a classification designed to assess the natural capital while the 
ESA CCI-LC classification is designed around plant functional types for use in Earth system process modelling. NN 
correspond to the codes in the various sources. Note that aggregation of classes from ESA CCI-LC to IPCC is set out in the 
Reporting Manual for the 2017-2018 UNCCD reporting process58.  

SEEA  GLC-Share IPCC ESA CCI-LC 

6 Tree-covered areas Tree-covered areas 04  1 Forest Land Tree cover, broadleaved, evergreen, closed to open 
(>15%) 50 

Tree cover, broadleaved, deciduous, closed to open 
(>15%) 60 

Tree cover, needle leaved, evergreen, closed to 
open (>15%) 70 

Tree cover, needle leaved, deciduous, closed to 
open (>15%) 80 

Tree cover, mixed leaf type, closed to open (>15%) 
90 

Mosaic tree and shrub (>50%)/herbaceous cover 
(<50%) 100 

5 Grassland  

8 Shrub-covered areas  

 

 

10 Sparsely natural  
vegetated areas 
 

Grassland 03 

Shrubs covered areas 05 

 

 

Sparse vegetation 08  

 
 

2 Grassland Grassland 130 

Shrubland 120 

Mosaic herbaceous cover (>50%)/tree and shrub 
(<50%) 110 

Sparse vegetation (tree, shrub, herbaceous cover) 
(<15%) 150 

Lichens and Mosses 140  

2 Herbaceous crops  

 

3 Woody crops 

 

4 Multiple or layered crops 

 

Cropland 02 

 

3 Cropland Cropland, rainfed: 10 

- Herbaceous cover 11 

- Tree or shrub cover 12 

Cropland, irrigated or post-flooding 20 

Mosaic cropland (>50%)/natural vegetation (tree, 
shrub, herbaceous cover) (<50%) 30 

Mosaic natural vegetation (tree, shrub, herbaceous 
cover) (>50%)/cropland (<50%) 40 

9 Shrubs and/or  
herbaceous vegetation, 
aquatic or regularly flooded 

7 Mangroves 

Herbaceous vegetation,  
aquatic or regularly flooded 
06 

Mangroves 07 

4 Wetlands Shrub or herbaceous cover, flooded, 
fresh/saline/brackish water 180 

Tree cover, flooded, fresh or brackish water 160 

Tree cover, flooded, saline water 170  

1 Artificial surfaces  
(including urban and  
associated areas) 
 

Artificial surfaces 01 
 

5 Settlements  Urban areas 190  

11 Terrestrial barren land  

12 Permanent snow and 
glaciers 
 

Bare soil 09 

Snow and glaciers 10 
 

6 Other Land Bare areas 200 

Permanent snow and ice 220  

13 Inland water bodies  

14 Coastal water bodies  
and intertidal areas 
 

Water bodies 11 
 

  Water bodies 210 

 
58 https://prais.unccd.int/sites/default/files/helper_documents/2-Manual_EN_1.pdf 
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3.2.3 Generate a Transit ion Matrix  

Within the SDG 15.3.1 indicator definition, land degradation is context specific. It depends on (a) the 
characteristics of the environment and (b), the values of those assessing it. Degradation might be: 

1. A decline in the actual or potential productive capacity of the land, through a loss of 
biomass or a reduction in vegetative cover and soil fertility 

2. A reduction in the land's capacity to provide resources for livelihoods 
3. A loss of biodiversity or ecosystem complexity 
4. Increased vulnerability of populations or habitats to destruction or crisis. 

These types of degradation are not independent and mitigating one may lead to an increase in 
another form of degradation. National authorities must decide which changes and processes are 
considered to be “degradation”. This should include class transitions that are of national concern, 
and may include deforestation, vegetation loss or urban expansion. The identification of specific 
transitions will help ensure that the set of land cover classes required to monitor land degradation at 
the national scale is appropriate. 

Land Cover and Land Cover Change is only one of the sub-indicators of SDG Indicator 15.3.1, each of 
which indicates unique elements of land degradation.  Land cover refers to the naturally stable 
aspects of the land, such as its constituent elements, their structure and homogeneity. Transient 
aspects such as vegetation phenology, snow, flooding or burned areas are not considered transitions 
in the context of SDG 15.3.1. Land cover datasets used for evaluating the Land Cover and Land Cover 
Change sub-indicator should map classes that are linked to these stable properties using the 
methods described in Section 3.2.2. 

National decisions about which land cover transitions are linked to a degradation process should be 
made in a participatory, transparent and deliberate way through a multi-stakeholder consultation 
process. Analysis of land cover data and visualisation of transitions will help stakeholders understand 
the trade-offs that exist between different types of benefits, for example food production and 
biodiversity. In some cases, land cover transitions will be too ambiguous to label as either 
degradation or improvement. In these cases, the transition should be labelled as “No Change”. In 
this situation, countries may wish to re-evaluate the legend being used and define finer classes that 
better capture transition that linked to degradation.  

It is good practice to define a matrix of land cover transitions that include all classes in the national 
legend. For example, using the IPCC legend (Penman et al. 2003), the six classes define 6 x 5 (30) 
possible transitions (Figure 3-2). These changes are classified according to 12 unique land cover 
changes, all of which are included in Table 3-1.  
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IPCC Class Forest Land Grassland Cropland Wetlands Settlements 
Other 
Land 

Forest Land Stable Vegetation loss Deforestation Inundation Deforestation 
Vegetation 
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Grassland Afforestation Stable 
Agricultural 
expansion Inundation 

Urban 
expansion 

Vegetation 
loss 

Cropland Afforestation 
Withdrawal of 

Agriculture Stable Inundation 
Urban 

expansion 
Vegetation 

loss 

Wetlands 
Woody 

Encroachment 
Wetland 
drainage 

Wetland 
drainage Stable 

Wetland 
drainage 

Wetland 
drainage 

Settlements Afforestation 
Vegetation 

establishment 
Agricultural 
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Wetland 
establishment Stable 

Withdrawal 
of 

Settlements 

Other Land Afforestation 
Vegetation 

establishment 
Agricultural 
expansion 

Wetland 
establishment 

Urban 
expansion Stable 

Figure 3-2. Example of a land cover change matrix using the 6 IPCC classes (30 possible transitions). Unlikely transitions are 
highlighted in red text (see below for discussion of unlikely transitions). Land cover change processes are colour coded as 
improvement (green), stable (yellow) or degradation (red). Note that this is an example of a transition matrix and should 
not be interpreted as appropriate for countries to adopt without consideration of local conditions and key degradation 
processes. 

An alternative transition matrix is presented in Figure 3-3 using the notional IPCCSX classification 
example introduced above. The transitions are not specifically named in this matrix, but it should be 
noted that there could be a mixture of identified transitions within each IPCC class.  

Not all possible transitions between classes are logical or plausible (Gómez et al. 2016; Wehmann & 
Liu 2015). In fact, identification of illogical or unlikely transitions may assist the validation of land 
cover change maps. A comprehensive approach would consider the probability of all transitions in 
the matrix, and which could be incorporated into automated classifications schemes (e.g., using 
Bayesian prior probabilities) to improve the accuracy of subsequent land cover maps.  

It is good practice in the identification and labelling of transitions to use objective change 
descriptions, and avoid attribution of cause or focus on why land cover has changed. It may be 
difficult to attribute specific causal factors to land cover changes. 
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  Forest Grassland Cropland Wetlands   

Native forest 
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 S D D D D D D D D D D D D 

Exotic forest I S NC D NC NC NC NC I I I D D 

Native 
grassland 
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I NC S D D D D D I D D D D 

Improved 
pasture I I I S NC I NC NC I NC I D D 

Managed 
parkland  I NC I NC S NC NC NC I I I D D 

Plantation 
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la
nd

 I NC I D NC S NC NC I NC I D D 

Cereals I NC I NC NC NC S NC I I I D D 

Horticulture I NC I NC NC NC NC S I NC I D D 

Wetland – 
permanent 

W
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I D D D D D D D S D NC D D 

Wetland – 
ephemeral I D I NC D NC D NC I S NC D D 

Coastal 
wetland I D I D D D D D NC NC S D D 

Settlements    I I I I I I I I I I I S I 

Other Land   I I I I I I I I I I I D S 

Figure 3-3. Example of a land cover change matrix for the 13 classes from the IPCCSX scheme (156 possible transitions). 
Unlikely transitions are highlighted in red text (see discussion below). In this example, land cover change processes are 
colour coded as improvement (I green), stable (S yellow), or no change (NC yellow), degradation (D red). In this context “no 
change” indicates that the transition is neither degradation or improvement, or that the data is insufficient to 
unambiguously label as degradation or improvement. 

 

3 .2.4 Assess Available Data  

A flow chart for assessing the desired standards for land cover datasets is set out in Figure 3-4. This 
process should be followed during the development of national datasets.  In other cases the default 
data should be used (see Section 2.1.3). 
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Figure 3-4. Decision tree for determining the most appropriate data for calculation of the land cover change sub-indicator 
(GEO-LDN Initiative 2020) 



 

Good Practice Guidance | SDG Indicator 15.3.1 32 

 

Specifically, performance against the following criteria should be assessed: 

1. Legend definition: The land cover dataset classes should be defined using the LCML 
standard, have adequate classes to populate the transition matrix and be part of a 
hierarchical classification system to promote easy harmonisation to IPCC and SEEA legends. 

2. Temporal range and frequency: Land cover data should be available during the SDG baseline 
period (2000-2015) and as close to the baseline year (2015) as possible. Ideally the land 
cover data should be revised on a yearly basis using the same legend. 

3. Spatial coverage and resolution: Each epoch of land cover data should be produced for the 
whole country and be recorded at high spatial accuracy. 

4. Classification accuracy: Classification accuracy should be known for each land unit at each 
epoch of data so that the probability of transition between classes between epochs can be 
calculated.  

Many countries have systems in place that regularly produce land cover mapping products. 
Occasionally multiple land cover mapping systems exist within the one country serving different land 
management and reporting purposes. In cases where there is little or no capacity to regularly 
produce an appropriate national land cover dataset, regional or global land cover data may be used 
(including the UNCCD Global Default land cover data, see Section 2.1.3.1). The legend for any land 
cover data must be adequate to populate the transition matrix when multiple epochs are assessed. 
National, regional and global land cover products should not be considered mutually exclusive - 
multiple products can be used to build an appropriate legend, and to cross-validate to help assess 
classification accuracy. 

Where existing land cover products do not meet the requirements of SDG 15.3.1, the UNCCD 
global default dataset should be used. However, given unique national context and degradation 
processes, it may be advantageous for a country to develop their own land cover classification. In 
additional to the global land cover datasets, there are many possible sources of land cover 
information that could be used to improve and validate the default data including: 

1. Census data 
2. Field observations and surveys 
3. Higher resolution remote sensing imagery 

While the first two data sources may be adequate for small regions, remote sensing data are the 
most efficient way to produce land cover data for an entire country at an update frequency required 
for reporting against the SDG 15.3 target. However, using remote sensing data to interpolate spatial 
products based on census, field observations and survey measurements is encouraged as these 
additional data provide a means to independently assess the accuracy of land cover products. 

It is good practice to define a spatial stratification approach to help guide the selection of field 
samples. In some cases, ground sampling for training and validation data may be impractical. 
Alternative approaches to data collection may include the manual interpretation of: 

 High resolution imagery (e.g., airborne, satellite, Google Earth via Collect Earth). 
 Crowd-sourced data, such as those available through the Geo-Wiki (Laso Bayas et al. 2016; 

Fritz et al. 2012). 
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When using remote sensing imagery to develop new land cover datasets there are a number of 
aspects of pre-processing that should be considered. While many of these should already be 
implemented in analysis-ready (level 2) remote sensing data, any product should include 
consideration of: 

 Sensor spectral and radiometric variations: While multiple sources of remote sensing 
imagery might be available for land cover classification, land cover products should maintain 
internal consistency across epochs so that variations in sensor characteristics do not lead to 
inaccurate identification of land cover changes. Internal consistency means that across 
different dates the source data and the classification algorithm used are the same. If 
changes are required it is good practice to re-evaluate previous assessments of land cover 
change prior to the current reporting cycle. 

 Geographic projection: Topographic distortion must be removed, and imagery must be 
projected into an established spatial or coordinate reference system (ISO 19111: 2007)59 to 
ensure that data is co-registered so that change detection can be performed over multiple 
dates. The choice of datum and projection is a national decision but should be consistent 
with that used for other sub-indicators for SDG 15.3.1. 

 Atmospheric attenuation and cloud effects: Optical remote sensing imagery must be 
processed to surface reflectance prior to the generation of land cover products. Surface 
reflectance products correct for atmospheric effects on remote sensing imagery. These are 
often available from image satellite data repositories such as the ESA Copernicus Open Data 
Hub60 and the USGS Earth Explorer61. When atmospheric attenuation is too great (e.g. due to 
cloud) data gaps may occur in the imagery, leading to a need for compositing of imagery 
(see below). 

 Bi-directional reflectance variations: The direction of sun and sensor relative to the surface 
location and surface normal direction can have an effect on apparent surface reflectance. 
Corrections should be implemented for these effects, or products where bi-directional 
distribution function (BRDF) and terrain (surface normal) affects have been corrected used. 
The ESA Copernicus Hub and USGS Earth Explorer deliver BRDF and terrain corrected 
imagery. BRDF correction can also be run in Google Earth Engine or SEPAL (sepal.io) for 
Landsat and Sentinel-2.  

 Transient and seasonal variation: Stable aspects of land cover include the elements, 
structure and homogeneity of the land, while the dynamic elements include phenology, 
snow and flood water coverage, and fire effects. Only changes in the stable components are 
considered land cover change in the context of SDG indicator 15.3.1. The challenge in 
developing new land cover data is to classify the source data based on these stable 
components in the presence of the dynamic components. In order to decouple these 
components, it is important to consider the intra-annual and monthly changes in land cover 
as captured in remote sensing time-series (Bontemps et al. 2012).  

 
59 https://www.iso.org/standard/41126.html  
60 https://scihub.copernicus.eu 
61 https://earthexplorer.usgs.gov/ 
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 Data Frequency: Best practice is to compile appropriate land cover data on an annual basis, 
even though reporting to UN is only required every 4 years. This provides the opportunity 
for countries to assess multiple years of land cover data and maximise their ability to 
capture changes in the stable components of land cover. Considerations should be given to 
transient impacts on land cover, such as short terms drought, fire and flood impacts. If a 
return of the previous land cover state is considered likely within the reporting period then it 
is reasonable to use the land cover class prior to such transient events. 

The most appropriate algorithm to use for land cover classification will depend on the land cover 
classes to be differentiated, and the characteristics of the data being employed. National authorities 
are best placed to make decisions regarding these methods once appropriate legends and source 
data are established. However, if national data are used, it is good practice to show how these data 
provide a more accurate assessment than those derived from global datasets.  

Both automated and semi-automated classification methods have been developed for the 
generation of land cover maps. Although unsupervised methods with post-classification labelling 
have frequently been used (Loveland et al. 1999; Bartholomé & Belward 2005), supervised methods 
have become more common. These include both parametric (generally Gaussian) and non-
parametric methods. Modern machine learning methods such as ensemble (support vector 
machines, random forests) and neural network (deep learning and convolutional NNs) approaches 
are becoming popular in land cover mapping and are valid considerations for automated mapping as 
long as adequate training and validation data is available. 

Khatami et al. (2016) present a list of most to least accurate algorithms for land cover classification. 
In addition to variations in the performance of specific classification algorithms, they found that the 
inclusion of additional variables (beyond optical satellite data) can yield improvements in 
classification accuracy (see Table 3-4.). It is good practice to use methods of land cover mapping that 
not only use static indices, but also the temporal change of these indices to determine what the final 
state of land cover is likely to be. This will help to identify transient, as well as illogical or improbable 
changes (Gómez et al. 2016) to support the final land cover class specification.   

Table 3-4. Improvements in the mean accuracy of land cover products after inclusion of additional data (in addition to raw 
spectral bands), based on the meta-analysis by Khatami et al. (2016). 

Input Data Mean Accuracy 
Improvement 

Textural indices 12.1% 

Topographic, geological, radar, lidar 8.5% 

Multi-angular data 8.0% 

Time-series data 6.9% 

Spectral Indices 2.4% 
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Methods for reporting land cover classification accuracy are well established and generally begin 
with a confusion (or error) matrix, which is a cross-tabulation of map and validation classes (see 
Table 3-5). The number of samples that appear along the diagonal show those samples that are 
correctly classified, while those that appear off the diagonal are considered errors. Confidence 
intervals should be reported for each of the accuracy measures in the confusion matrix (Olofsson et 
al. 2014). 

Table 3-5. Example of a three-class confusion matrix and accuracy statistics. 
 

Validation 
Class 1 

Validation 
Class 2 

Validation 
Class 3 

Commission 
Error 

Map Class 1 p11 p12 p13 

 

Map Class 2 p21 p22 p23 

 

Map Class 3 p31 p32 p33 

 

Omission 
Error 

    

 

3 .2.5 Establ ishing the Basel ine 

In order to track change in the extent of degraded land for the purposes of assessing SDG Target 
15.3 and LDN it is necessary to calculate a baseline extent of land cover change degradation.  This 
baseline sets the benchmark extent of land cover degradation against which the extent of land cover 
degradation in the reporting periods is compared.   

Once the land cover transition matrix has been identified, the extent of land cover degradation in 
the baseline period should be calculated by comparing land cover on two dates in the baseline 
period: 2015 (the baseline year) and one other year between 2000 and 2014.  A longer duration 
between dates may result in a larger extent of degradation, whereas a shorter duration may not 
encapsulate sufficient land cover change to identify the main degrading transitions. All transitions 
(likely degraded, stable and likely improving) can be reported for the baseline period, with the 
extent of degradation being particularly important for assessing Indicator 15.3.1.  

The selection of dates may be restricted by the availability of appropriate and consistent datasets 
suitable for comparison with the 2015 baseline year.  In particular, the archive of one of the most 
advanced new datasets, the CGLS-LC100 62, extends only from 2015 to 2019. Consistent with the 
guidelines for recalculating the time series (Chapter 6), new and improved datasets should be 
adopted as the standard.  However, for calculating the baseline extent of land cover degradation as 

 
62 https://land.copernicus.eu/global/content/annual-100m-global-land-cover-maps-available  
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described above, it will be necessary to use an alternative dataset with an archive of images 
extending throughout the baseline period, such as the CCI-LC.   

The consistency of estimates of the extent of land cover degradation between the CCI-LC and CGLS-
LC100 products can be assessed by comparing the extent estimates for the overlapping years of data 
using the overlap method described in Section 6.1.2. The spatial distribution of land cover 
degradation indicated by the CCI-LC data can be compared to the extent indicated by the CGLS-
LC100 data, and the consistency and differences between them described in national reports using 
the processes described in Section 6.1.3.  

3.2.6 Generate Reports of Land Degradation 

Yearly reporting of land cover change will help identify areas where significant portions of land are 
degrading. Reporting should be detailed enough so that national stakeholders are able to determine 
the location, type and level of change that has occurred. The following good practice principles 
apply to the reporting process. 

1) Describe the legend and transition matrix including the decision on key degradation 
processes, the classes used in the legend, a table that shows how the legend can be 
harmonised to IPCC classes and a land cover transitions matrix with degradation processes 
labelled. 

2) Provide two national land cover maps, one for the baseline year (2015) and one for the 
reporting year. These maps should have the same spatial precision (e.g. pixel resolution), 
coordinate reference system and origin or projection. They should use the same land cover 
classification approach and be accompanied by an accuracy assessment for each map, 
including a confusion (error) matrix with accuracy and confidence intervals. 

3) Present land cover change information based on the difference between the reporting 
year and baseline year. This should include: 
a) A national map that shows the type and location of land cover transitions and the 

confidence interval for the detected transitions. 
b) A table that identifies the total area of land that is associated with each major land cover 

transition. 
c) A national map that shows areas of degradation, improvement and no change, based on 

the land cover data. Ideally, his should be accompanied by a corresponding map that 
indicates the confidence in the assessment of any change from the baseline 
(degradation or improvement). 

4) Perform qualitative assessments of areas identified as degraded or improved. This should 
assess the key land cover changes as specified above in 1) in terms of the: 
a) Location, scale and rate of degradation 
b) Direct or indirect drivers of these changes or improvements 

5) Justify why any elements identified as degraded in the land cover change data should not 
be included in the overall indicator calculation. This should be based on the identification of 
false positives, where change in the land cover data is due to stable or improved land 
condition. 

6) Justify why any reporting units not identified as degraded in the land cover change data 
should be included as degradation in the overall indicator calculation. This should include a 
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proposed improvement to the land cover classification approach or legend so that accuracy 
can be improved or so that such degradation processes become more apparent in future 
assessment periods. 

3.3 Comments and Limitations 

This chapter of the GPG for SDG indicator 15.3.1 outlines the key principles and considerations when 
implementing national scale monitoring of the sub-indicator on land cover and land cover change, 
drawing on a wealth of existing knowledge of good practice.  

Recognizing that no sole EO dataset has yet proven to be completely adequate for rigorous land 
cover change detection, new satellite datasets coupled with data integration methods are 
increasingly challenging this notion. Furthermore, the choice or design of the classification system or 
legend may miss some transitions (for example, the IPCC scheme and the elaboration in Table 3-2 do 
not allow for consideration of the effect of invasive species). Regardless, the adoption of 
quantitative and repeatable methods for land cover mapping is one of the more critical tools for 
detecting change, which can be validated using more detailed manual interpretation of high-
resolution imagery or ground based surveys or other validation methods.   

By following good practice, decisions made by countries that take into account their specific land 
cover types and change processes will be more effective in providing a basis for setting policy 
responses to address land degradation. The level of data, expertise and resources available for 
reporting on this sub-indicator will vary immensely, and that it is not the intention of this GPG to 
increase the reporting burden on national agencies. Rather it is hoped that this land cover and land 
cover change sub-indicator can be aligned with, and find application as a tool for, both national and 
SDG reporting and to meet other reporting or national agendas implementing obligations. 
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4 Land Productivity 

4.1 Executive Summary 
This Chapter describes keys steps in the analysis of the default global or national land productivity 
data, largely derived from EO sources, to measure land productivity degradation for reporting on 
SDG Indicator 15.3.1.   

4 .1.1 Role and calculat ion of  the sub- indicator 

Land productivity is the biological productive capacity of the land, the principal source of the food, 
fibre and fuel that sustains humans. It points to long-term changes in the health and productive 
capacity of the land, and reflects the net effects of changes in ecosystem functioning on plant and 
biomass growth. This can be measured at local to global scales using satellite remote sensing and 
image transformations that are sensitive to changes in plant productivity and are correlated with the 
NPP of vegetation measured in a specific timeframe.  

Estimates of relative change in productivity values, such as those provided by the NDVI, are 
sufficient to assess and evaluate trends in land degradation in accordance with the methodology 
presented in this GPG. Observations of land productivity during each growing season are integrated 
to represent annual productivity, and these annual productivity estimates are the basis of the 
comparison of change in productivity over time.   

The extent of land where plant productivity is improving, stable or degraded is assessed from the 
annual productivity estimates using three metrics:  

1. Trend, which measures the trajectory of productivity change over the long term,  
2. State, which compares the current productivity level in a given area to recent historical 

observations of productivity in that same area, and  
3. Performance, which indicates the level of local productivity compared with other areas with 

a similar land productivity potential regionally. 

In combination, these metrics enable land productivity degradation at different phases of the long-
term productivity cycle to be identified.  

The extent of land productivity degradation is first calculated in the baseline period from 2000-2015, 
which sets the benchmark extent of degradation that forms the basis for the comparison of 
degraded extent in the subsequent reporting periods.     

4 .1.2 Changes from version 1 of the GPG 

This chapter has been extensively revised to update and improve the utility of the guidance provided 
for assessing land productivity degradation.  Key changes include: 

 Improved definitions and terms, including more information on the relationship between 
NPP, biomass and NDVI. 

 An expanded introduction describing the range of land degradation processes and cycles 
that guide the methods presented in this Chapter. 

 Updated guidance from the GEO LDN Initiative on the selection of suitable datasets for land 
productivity assessment. 

 Methodological changes to each of the productivity metrics: 
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o Trend is now assessed over a moving window of 16 years for both the baseline and 
reporting periods, rather than 16 years for the baseline and 8 years for the reporting 
periods as described in Version 1.  This provides a more consistent basis for the 
assessment of changes in productivity Trend, but at the expense of sensitivity to 
shorter term productivity dynamics.  Trend degradation is now assessed in terms of 
five z-score levels, which may assist in identifying areas that are potentially 
degrading or improving, as well as those that are statistically significantly degraded. 

o State is now calculated using a five-level assessment of z-scores, rather than the 
decile-change method described in GPG version 1.   

o Additional guidance is provided on constraining the spatial extent of productivity 
Performance assessment.  

 Guidance for the assessment of each of the productivity metrics now more clearly presents 
methods for their assessment in the baseline and reporting periods.   

 Additional options are presented for combining the metrics to identify productivity 
degradation in a range of phases of the long-term productivity cycle, such as where 
productivity remains stable but below normal for a long period of time, or to ignore a 
declining productivity Trend where the productivity remains high if required.   

4 .1.3 Interpretat ion and further work  

Countries should ultimately strive to report changes in land productivity at the highest level of detail 
and rigour. However, differences between countries in their capacity to conduct remote sensing 
analyses, access to and availability of data sets and the range and distribution of productivity 
conditions will make some methods more suitable in some countries than in others.  Accordingly, a 
range of processing and analysis options are described for each of the key steps.  Additional 
guidance on the assessment of suitable datasets and indices for measuring land productivity, 
methods to minimise the influence of climatic variations on productivity estimates, methods to 
harmonise different datasets and for validating land productivity measurements are provided in  
Appendix B.  

4.2 Methodology 

4.2.1 Land degradat ion patterns and processes 

This Chapter presents a series of metrics and data processing methods to measure and interpret 
land productivity degradation from satellite observations and other ancillary data.  The degradation 
of land productivity may occur from environmental and anthropogenic drivers, at spatial scales from 
local to regional, and with a rate of change that may be fast or slow. Figure 4-1 shows examples of 
some drivers of degradation at these different rates and scales.   
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Figure 4-1  Examples drivers of land productivity degradation at different spatial extents and rate of change.  There are 
many others that influence the long-term level and trend of land productivity at global to regional scales 

Land productivity cycles exhibit phases over time.  Vegetation productivity varies seasonally with 
annual growth and phenological cycles, and between years, in response to differences in moisture 
availability and other climatic factors.  Over multiple years, patterns in the trajectory and level of 
annual productivity can be observed (Figure 4-2).  A persistent decline in productivity levels, or 
productivity levels that remain below the long-term average may indicate potential land productivity 
degradation.  The combination of metrics presented in this chapter enable productivity degradation 
to be identified in each of these phases.  

 
Figure 4-2.  Stylised phases in the long-term average trend of land productivity.  A declining trend of productivity, or 
productivity levels that remain below the long-term average, may indicate productivity degradation. 
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4.2.2 Rationale 

The methods for land productivity degradation assessment presented in this GPG draw on the 
proposed method for assessing land productivity trends for the World Atlas of Desertification (WAD; 
Cherlet et al. 2018) which was developed by the JRC to measure land degradation at global scales 
(Figure 4-3). While the WAD method prescribes particular datasets and methods, some of these are 
more likely to be suited to some countries and scales of analysis than to others.  

While the methods for calculating land productivity degradation presented in this GPG are largely 
based on the WAD method, many options are available for conducting certain aspects of this 
analysis. Some of the key options and considerations when making choices on the datasets and 
methods to use are presented throughout this chapter. 

 

 
Figure 4-3. Scheme for calculating land cover productivity dynamics for the World Atlas of Desertification (Ivits and Cherlet 
2016) 

The assessment of land productivity in this GPG uses three metrics calculated from remotely sensed 
estimates of land productivity: 

1. Trend, which measures the trajectory of productivity change over the long term,  
2. State, which compares the current productivity level in a given area to recent historical 

observations of productivity in that same area, and  
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3. Performance, which indicates the level of local productivity compared with other areas with 
a similar land productivity potential regionally. 

 
In combination, these three metrics can identify degradation in land units where land productivity is: 

i) exhibiting a significant negative trend over the longer term 
ii) exhibiting a recent change in trajectory compared to the long-term trend 
iii) substantially lower than ‘normal’ for a given location over time 
iv) substantially lower than other similar land capability units within a given region 
v) increasing but remains lower than ‘normal’. 

Changes in the extent of land degradation are measured relative to a baseline (t0) calculated from 
the baseline period which extends from 1 January 2000 to 31 December 2015.  Subsets of this period 
may be used to assess the baseline degradation status for certain metrics.  Values for the metrics 
and the sub-indicator calculated from the baseline period are used to determine the extent of land 
degradation against which the achievement of LDN is assessed.   

The method presented in this chapter is comprised of six main processing steps (Table 4-1 ).  

Table 4-1 Processing steps, recommendations, and options for assessing the sub-indicator on land productivity 

Chapter 
Section 

Processing 
Step 

Minimum Required Standards  Options 

Section  
4.2.3 

Select image 
dataset 

Global default data products High resolution and/or national datasets where 
available 

Appendix 
B.1 

Select a 
productivity 
index 

Normalized Difference Vegetation 
Index unless an alternative is known to 
perform better 

A large number of alternative vegetation indexes can 
be calculated from image data  

Calibrate for moisture availability using Water Use 
Efficiency or alternative (Appendix B.2). This may be 
important in areas with very high or very low 
vegetation cover. 

Section 
4.2.4.1 

Calculate 
annual 
productivity 
estimates 

Use TIMESAT or similar to retrieve data 
from time series measurements over 
all or part of the growing season each 
year  

Calculate over a cloud-free period, anniversary date 
and/or from imagery coincident with field sampling  

Section 
4.2.4 

Calculate land 
productivity 
metrics 

Trend, Performance and State  As described in the relevant section 

Section 
4.2.5 

Calculate the 
sub-indicator 

Aggregate the metrics to show land 
productivity degradation 

Metrics can be aggregated in several ways to show 
different aspects of productivity degradation 

Appendix 
B.5 

Validation Collect Earth, flux tower or destructive 
samples 

Expert opinion or concordance of evidence 

 

4 .2.3 Land productivity  datasets 

The main dataset required to interpret land productivity degradation is a time series of annual 
vegetation productivity measurements, such as the NDVI (Tucker 1979), which has been 
demonstrated to be well correlated with plant productivity and biomass in a wide range of 
ecosystems globally. The NDVI is recommended by the GEO LDN Initiative as the default index for 
countries to use in the absence of evidence to indicate that an alternative index is better suited to 
their landscape (Figure 4-4).  However, there are a wide range of alternative datasets correlated with 
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plant productivity that may be better suited to some countries than others (See Appendix B.1).  In 
particular, the Enhanced Vegetation Index 2 (EVI2, Jiang et al. 2008) may be superior to the NDVI in 
comparison to a time series of land productivity observations that have been calibrated to minimise 
the impact of variations in moisture availability, which may be useful for identifying anthropogenic 
from environmental drivers of degradation (see Appendix B.2). 

4.2.3.1  Default global  datasets 

The default dataset provided by the UNCCD for reporting in 2018 was the LPD of the JRC63.  This 
product shows vegetation in 5 classes of persistent land productivity trajectories from 1999-2013 
and is available through Trends.Earth.  Two alternative global datasets are also available through 
Trends.Earth: the Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Monitoring 
and Modelling System (GIMMS) 3rd generation NDVI dataset64, and the Moderate Resolution Imaging 
Spectrometer (MODIS) dataset numbers MOD13Q1 collection 665.  The AVHRR GIMMS3g dataset 
integrates NDVI observations at 8km pixel resolution over a 16-day period from July 1981 to the 
present.  The GIMMS processing minimises the influence of factors such as sensor degradation over 
time, orbital drift and volcanic eruptions (amongst others) on image quality, providing an NDVI time 
series that is very consistent over many years (Fensholt and Proud 2012).  The large pixel size makes 
this dataset ideally suited for reporting at continental or global scales.  

MOD13Q1 integrates NDVI observations (and EVI1) at 250m pixel resolution over 16 day periods 
between 18 February 2000 to the present, and builds a composite scene from pixels with the highest 
NDVI value, lowest view angle and lowest cloud cover during the integration period for every 
location on the globe.  With its smaller pixel size relative to GIMMS3g, this dataset is better suited to 
reporting at national and sub-national scales.   

4.2.3.2  National  datasets 

The default datasets are recommended for use only where a more suitable national dataset is not 
available.  Ideally, countries will have, or aim to produce, a land productivity time series dataset that 
best suits their landscape and land productivity characteristics.  

Figure 4-4 shows a decision tree to help guide the identification of datasets suitable for use for 
calculating land productivity degradation.   

 
63 https://wad.jrc.ec.europa.eu/landproductivity  
64 https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/  
65 https://lpdaac.usgs.gov/products/mod13q1v006/  
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Figure 4-4. Decision tree to determine the suitability of datasets for calculating the land productivity sub-indicator (GEO-
LDN Initiative 2020). 
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The range of available image data sources suitable for assessing land productivity is increasing as 
new EO satellites are being launched. The key criteria for the selection of a dataset are that it should 
have an archive of historical data from which baseline conditions can be calculated (ideally spanning 
15 years or more including the baseline period), coverage of the entire study area, pixels small 
enough to represent productivity at the desired spatial resolution, and the spectral bands required 
to calculate the required productivity indices.   

While Figure 4-4 indicates a minimum temporal coverage of only 3 years for national data, this short 
period is unlikely to encapsulate much of the typical variation in conditions, and a minimum period 
of 15 years is recommended in highly variable systems (Kennard et al. 2010). A list of alternative low 
or no cost datasets, and some additional guidance on dataset selection is provided in Appendix B.3.  

4.2.4 Calculating the productiv ity  metrics  

4.2.4.1  Retr ieving annual  product ivi ty  est imates  

Data can be extracted from time series image datasets, such as those shown in Table B-2.  Due to the 
natural cycles of growth and senescence in most vegetation communities, NPP is best represented 
by a subset of observations captured during the period of highest plant growth each year.  This is 
specifically captured by the integral, or the area under the growing season productivity indicator 
profile.  This is commonly computed by summation of the productivity indicator values from start to 
end of the growing season.  

The growing season is most easily identified from time series satellite observations in temperate 
regions where there is a pronounced seasonal change in productivity levels throughout the year.  
Such pronounced cyclical variation in productivity may not occur in tropical regions or areas with low 
vegetation cover. In these cases, the assessment season each year can be defined based on the 
expected period of highest biomass, the period of lowest cloud cover, or an arbitrary period chosen 
to coincide with field data collection. Ideally, the assessment period should occur at approximately 
the same time each year and/or represent growing conditions that are as similar as possible for each 
assessment period.  

The freely available TIMESAT software66 (Eklundh and Jönsson 2015a, b) includes features for 
automatically identifying the growing season and calculating a range of annual metrics from time 
series data describing the phenology.  Figure 4-5 shows some of the parameters that can be 
calculated from time series data using TIMESAT. Field data are required to determine which of these 
parameters is best correlated with NPP in any particular region. In the absence of field data, the 
most highly correlated metric is often the ‘small integral’ (equivalent to area ‘h’ in Figure 4-5 ) which 
represents the signal associated with growing season recurrent vegetation (Fensholt et al. 2013; Ma 
et al. 2015; Moran et al. 2014; Olsen et al. 2015).   

Recent studies have demonstrated improved correlations with field samples of NPP using absolute 
rather than proportional values to define the growing season. For example, Olsen et al. (2015) 
selected NDVI values of 0.22 for season start and 0.25 for season end. The choice to use proportional 
or absolute values may influence the extent over which the growing season can be identified in the 
time series imagery.  

 
66 http://web.nateko.lu.se/timesat/timesat.asp  
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TIMESAT also includes features to smooth noise and fill gaps in the time series, such as from missing 
observations or cloud cover (red line in Figure 4-5 ). Smoothing the data in this way can improve the 
comparability of NPP measurements between years, which may include more or fewer observations 
in different years.  

 
Figure 4-5. Some of the parameters generated in TIMESAT: (a) beginning of season, (b) end of season, (c) length of season, 
(d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude, (h) small integrated value, (h+i) large 
integrated value (source http://web.nateko.lu.se/timesat/timesat.asp?cat=0). 

A range of alternatives to TIMESAT are also available, including the Software for Processing and 
Interpreting Remote Sensing Image Time Series (SPIRITS)67 which is more suited to medium and 
coarse resolution imagery, and a system currently being implemented in Google Earth Engine which 
automatically selects the peak growing season each year, calculates the appropriate integrals and 
computes the annual trends in NPP and Water Use Efficiency (WUE) from a range of datasets68 

4.2.4.2  Product ivity Trend 

Productivity Trend describes the trajectory of change in productivity over the longer term on a pixel 
level (Figure 4-6). Trend is calculated by fitting a robust, non-parametric linear regression model 
such as the Thiel-Sen median (Ivits and Cherlet 2016), which can be implemented using the ‘mblm’ 
package in R across the annual NPP values.69 The Mann-Kendall ‘Z’ score70 calculated using the 
‘trend’ package in R can be used to determine the significance of the Trend slope (Onyutha et al. 
2016).  Positive Z scores indicate a trend of increasing productivity and negative scores indicate 
decreasing productivity.   Z scores reflect the magnitude of the slope, with larger positive or negative 
scores indicating a more statistically significant slope.  The black data points show a non-significant 
increasing trend in annual productivity over the baseline period. The blue points show a significant 
increase and the red points show a significant decrease over the same period. 

 
67 Software for Processing and Interpreting Remote Sensing Image Time Series (SPIRITS) | EU Science Hub (europa.eu) 
68 https://zenodo.org/record/3945802  
69 https://cran.r-project.org/web/packages/mblm/mblm.pdf  
70 https://cran.r-project.org/web/packages/trend/trend.pdf  
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The bins used in the five-level scale to interpret the significance of the slope of the productivity 
Trend gradient are based on the probability of encountering a value by chance in a normally 
distributed sample, such as should be expected in samples such as NPP71.  The z-score represents the 
number of standard deviations from the mean of the sample.  Z- values can also be interpreted in 
terms of the probability of a data value occurring outside of that distance from the mean (P value) 
and the statistical confidence that the value has not occurred by chance alone.   

 

Figure 4-6. Example of productivity trend Figure to be included in the reports. The blue points and regression line show a 
significant increase, and the red points and regression line show a significant decrease over the same period. The trend plot 
provided in the report should include only one trend line per region.  

Table 4-2 shows the relationship between two-tailed z-scores, p-values and statistical confidence for 
a normally distributed sample.  We recommend the use of Z = 1.96 and Z = 1.28 as the boundary 
between levels as these options balance a reasonably high level of statistical confidence in the 
assessment of the significance of the Trend slope, with sensitivity to changes that may be indicative 
of potential changes in Trend direction.   

Table 4-2.  Relationship between two-tailed Z-scores, P-values and statistical confidence for a normally distributed sample.  

Z-score P-value Confidence 
Potential error 

rate of detection 

< -2.58 or > +2.58 < 0.01 99% 1% 

< -1.96 or > +1.96 < 0.05 95% 5% 

< -1.65 or > +1.65 < 0.10 90% 10% 

< -1.28 or > +1.28 < 0.20 80% 20% 

< -1.04 or > +1.04 <0.30 70% 30% 

 
71 https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm  
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4.2.4.2.1  Calculat ing the productivity Trend base l ine 

Productivity Trend in the baseline period should be calculated using all 16 annual productivity 
measurements between the years 2000-2015. The significance of Trend slope Z scores for the 
reporting period data can be interpreted on a five-level scale:  

 Z score < -1.96 = Degrading, as indicated by a significant decreasing trend 
 Z score < -1.28 AND ≥ -1.96 = Potentially Degrading 
 Z score ≥ -1.28 AND ≤ 1.28 = No significant change 
 Z score > 1.28 AND ≤ 1.96 = Potentially Improving, or 
 Z score > 1.96 = Improving, as indicated by a significant increasing trend 

 
The 5-level scale provides a great deal of information about the direction and magnitude of the 
change in productivity over time for each pixel.  For the purposes of monitoring LDN, these classes 
can be presented as a map showing the extent of land on which productivity Trend is potentially 
degrading (Z = < -1.28), remaining stable (Z = ≥ -1.28 AND ≤ 1.28) or potentially improving (Z = > 
1.28).     

For reporting on SDG Indicator 15.3.1, and for calculating the Land Productivity sub-indicator (see 
Section 4.2.5), it is necessary to classify productivity Trend into one of two classes; degraded or not 
degraded.  The Potentially Degrading class has an error rate of detection of around 20% as opposed 
to 5% for the Degrading class (Table 4-2).  Therefore, for the purposes of calculating the Land 
Productivity Sub-Indicator, we recommend considering only the area of the lowest negative Z-score 
level (< -1.96) as degraded.  Areas in other Z-score classes should be reported as not degraded. 

4.2.4.2.2  Calculat ing product ivi ty  Trend in the report ing per iods 

To maintain consistency with the Trend assessment in the baseline, we recommend calculating the 
Trend for the reporting period using a period of 16 years, ending in the last full year of data being 
reported.  The reporting period will move forward by 4 years on commencement of every new 
reporting period.  For example, reporting in 2022 could calculate reporting period Trend over the 
years 2006 to 2021 if annual productivity data is available for the full 2021 growing season.  

Trend slope Z scores for the reporting period should be classified into the same five-level scale as 
baseline period, and for monitoring LDN these can be converted into the three-class map showing 
areas that are potentially degrading, remaining stable or potentially improving.  As with the 
calculation of productivity Trend in the baseline period, for the purposes of calculating the Land 
Productivity Sub-Indicator, we recommend considering only the area the area of the lowest negative 
Z-score level (< -1.96) as degraded.  Areas in other Z-score classes should be considered as not 
degraded. 

4.2.4.2.3  Notes on reporting productiv ity  Trend 

Productivity Trend is one of three metrics used to determine land productivity degradation, and as 
such it is not sufficient to classify land as degraded at the sub-indicator level using Trend alone.   
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For the purposes of monitoring LDN, Productivity Trend in the reporting periods should be reported 
as potentially degrading, stable or potentially improving according to the direction and significance 
of the trend observed. The area of land in each of these categories should be calculated and 
presented as a map, and justifications for any changes in the distribution or extent of degraded land 
between the baseline and reporting periods should be included in the report.   

This assessment could be accompanied by a scatter plot figure showing the annual productivity 
measurements, with a linear trend line fitted and slope indicated, as shown in Figure 4-6. The trend 
plot provided in the report should include only one trend line per land cover class for each reporting 
unit. 

We do not recommend scrutinising changes in the slope of the Trend as an indicator of the 
magnitude of change in productivity degradation levels except in the terms described above.   
Additional guidance on the interpretation of degradation severity is provided in Chapter 7.  

4.2.4.3  Product ivity State 

Productivity State represents the level of productivity in a land unit compared to the historical 
observations of productivity for that land unit over time (Ivits and Cherlet 2016). Productivity State 
degradation is determined by comparing the mean annual NPP of the three most recent years to the 
distribution of annual NPP values observed in the preceding 13 years.  By comparing productivity in 
the three most recent years to the 13 earlier years, productivity State is more sensitive to the recent 
magnitude and direction of change in NPP than Trend, which represents the trajectory of 
productivity change over the longer term.   

Productivity State can be interpreted as a level of productivity relative to historical observations of a 
given location, and as an ‘early warning’ indicator of the potential future trajectory of productivity 
change.   

4.2.4.3.1  Calculat ing the productivity State basel ine 

The productivity State baseline sets the extent of productivity State degradation to which 
measurements in the reporting period are compared.  Calculate the mean (µ) and standard deviation 
(σ) of the annual NPP measurements from 2000 to 2012 inclusive.  These statistics are assumed to 
be representative of the normal distribution of annual NPP measurements over time. 

𝜇 =
∑ 𝑥𝑦

𝑦−3
𝑦−15

13
 
 

Equation 4-1 
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𝑦−15

13
 

 

Equation 4-2 

Where x is the metric used for productivity (e.g. annual NDVI) and y is the year of analysis.  

Productivity State in the baseline period is calculated by comparing the mean of the final 3 years of 
the baseline period to the distribution of annual NPP measurements from 2000 to 2012 as follows: 
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Calculate the mean of 2013-2015 inclusive 

𝑥̅ =
∑ 𝑥𝑦

𝑦
𝑦−2
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Equation 4-3 

Calculate the Z statistic 

𝑧 =
𝑥̅ − 𝜇
𝜎
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Equation 4-4 

The significance of productivity State degradation in the baseline period can be interpreted from the 
Z scores using the same five-level scale as for productivity Trend with slightly modified class labels:  

 Z score < -1.96 = Degraded, showing a significantly lower mean in the recent years compared 
to the longer term 

 Z score < -1.28 AND ≥ -1.96 = At risk of degrading 
 Z score ≥ -1.28 AND ≤ 1.28 = No significant change 
 Z score > 1.28 AND ≤ 1.96 = Potentially Improving 
 Z score > 1.96 = Improving, as indicated by a significantly higher mean in recent years 

compared to the longer term 

The 5-level scale provides a great deal of information about the direction and magnitude of the 
change in productivity State over time for each pixel.  For the purposes of monitoring LDN, these 
classes can be presented as a map showing the extent of land on which productivity State is 
potentially degrading (Z = < -1.28), remaining stable (Z = ≥ -1.28 AND ≤ 1.28) or potentially improving 
(Z = > 1.28).      

Reporting on SDG Indicator 15.3.1, and for calculating the Land Productivity sub-indicator (see 
Section 4.2.5), it is necessary to classify productivity State into one of two classes; degraded or not 
degraded.  For the purposes of calculating the Land Productivity Sub-Indicator, we recommend 
considering only the area of the lowest negative Z-score level (< -1.96) as degraded.  Areas in other 
Z-score classes should be considered as not degraded. 

4.2.4.3.2  Calculat ing product ivi ty  State in the  reporting periods 

Productivity State in the reporting periods is calculated from the 16 most recent years of annual NPP 
data up to and including the most recent year included in the reporting period.  The mean of the 
most recent 3 years is compared to the distribution of annual NPP values in the preceding 13 years, 
using the method described for calculating State degradation in the baseline (Section 4.2.4.3.1).   

Productivity State degradation can be classified using the five-level scale described for the baseline 
period, and converted into a three-class map showing areas in which productivity State is potentially 
degrading (Z = < -1.28), remaining stable (Z = ≥ -1.28 AND ≤ 1.28) or potentially improving (Z = > 
1.28).     

Reporting on SDG Indicator 15.3.1 requires land to be classified into one of two classes; degraded or 
not degraded.  For the purposes of calculating the Land Productivity Sub-Indicator, we recommend 
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considering only the area of the lowest negative Z-score level (< -1.96) as degraded.  Areas in other 
Z-score classes should be considered as not degraded. 

4.2.4.3.3  Notes on reporting productiv ity  State  

Productivity State is one of three metrics used to determine land productivity degradation, and as 
such it is not sufficient to classify land as degraded at the sub-indicator level using State alone.   

Note that, while the recommended Z score (and probability and confidence levels) used to define 
classes of productivity State degradation are identical to those used for Trend, their descriptive 
labels reflect the differences in interpretation.    

4.2.4.4  Product ivity Performance 

Productivity Performance indicates the level of local plant productivity relative to other regions with 
similar productivity potential.  Specifically, productivity Performance compares productivity in each 
land unit to the productivity level of all other land units within the same LCEU in the assessment 
period (see definitions in Section 0).  LCEUs can be defined based on any available information on 
factors influencing plant productivity potential such as land cover, soil type, climate conditions, 
elevation and aspect.  A subset of the available datasets may also be used, and the decision on which 
variables to include should be supported by local knowledge of the factors controlling productivity in 
that LCEU.  A range of global datasets are available to stratify the landscape into LCEUs for 
calculating productivity Performance (Table 4-3).  Figure 4-7 shows northern South America overlaid 
with the Global Agro-Environmental Stratification (GAES) level 4 stratification boundaries, which are 
considered appropriate for Performance assessment in most locations.   

Table 4-3.  A subset of global datasets that may be used to support the spatial definition of LCEU regions for productivity 
Performance assessment 

Dataset Variables Reference 

Terrestrial Ecosystems of the 
World (TEOW)72 

Climate, expert consultation 
(Olson et 
al. 2001) 

Global Homogeneous 
Response Units73 

Soil, slope, altitude 
(Skalsky 
et al. 
2012) 

Global Ecological Land 
Units74 

Bioclimate, landform, lithology, and land cover. 
(Sayre et 
al. 2014) 

Global Agro-Environmental 
Stratification (GAES)75 

Climate, elevation, soil, growing season, 
vegetation & other 

(Mücher 
et al. 
2016) 

World Ecosystems76 Landform (slope, altitude), soil, climate, vege. 
(Sayre et 
al. 2020) 

 
72 https://www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22 
73 https://doi.pangaea.de/10.1594/PANGAEA.775369 
74 http://www.aag.org/galleries/default-file/AAG_Global_Ecosyst_bklt72.pdf  
75 http://www.fao.org/geonetwork/srv/en/main.home?uuid=a509e912-9166-407e-828c-bcb31a8109d8  
76 https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/  
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The main assumption of this metric is that, in the absence of degrading factors, productivity levels in 
each land unit within the LCEU should be similar for a given assessment period.  Productivity 
Performance may identify areas of long-term degradation, in which there is not necessarily a 
declining Trend in productivity, but where the level of productivity in a given land unit remains low 
relative to other land units within the LCEU. Productivity performance can indicate the impacts of 
land management activities, such as differences in the intensity of grazing (rangelands) or logging 
(forests) across fence lines, or from other localised sources. 

 
Figure 4-7. Map of South America with Agro-ecological Stratification (layer 4) in red, country borders in back and land cover 
classes (forest – green, grassland – yellow, croplands – pink). A zoom around the ‘Los Llanos’ highland grassland strata 
which borders Colombia and Venezuela is also shown which illustrates that this grassland strata is shared by two countries 

Productivity Performance for a given land unit is calculated in comparison with the maximum 
productivity index value observed within the relevant land unit (NPPmax). In order to avoid possible 
overestimation of the maximum value due to the presence of outliers, it is recommended to use the 
90th percentile of the productivity values within the land unit. Once NPPmax is obtained, Productivity 
performance in each pixel within the land unit is calculated as: 

 

Equation 4-5 

Productivity Performance values close to 1 represent pixels in which productivity is close to the 
highest level for that land unit in that period of time. Performance levels well below NPPmax may 
indicate land degradation, and we suggest considering pixels with productivity values less than 0.5 of 
the NPPmax (Figure 4-8) as degraded for the purpose of calculating the land Productivity sub-
Indicator. 
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Figure 4-8. Illustration of the Productivity Performance in a hypothetical example. Performance compares productivity 
within a land capability unit. Pixels or regions where productivity is less than half the value of the 90%th percentile for that 
land capability unit may indicate potential degradation. 

4.2.4.4.1  Calculat ing the Performance base line  

Productivity Performance during the baseline period should be calculated from the mean of the 
annual productivity assessments over the baseline period from 2000 to 2015. A map of performance 
degradation should be produced showing the spatial distribution of pixels < 0.5 NPPmax. 

The calculation of productivity Performance is strongly dependent on the definition of the LCEU. 
Unlike the Trend and State metrics which assess changes over time, Performance is a spatial 
comparison, and the results may change if the extent over which the analysis is conducted changes.  
The most ecologically relevant assessment of productivity Performance should theoretically include 
all other pixels within the same LCEU in the local geographical region.   

4.2.4.4.2  Calculat ing Performance in  the report ing per iods  

Productivity performance in the reporting periods should be calculated from the mean of the annual 
productivity assessments over the years between the previous (or baseline) assessment up to the 
current year. For reporting in 2022, for example, performance could be calculated from an average 
of 2019, 2020 and 2021 productivity measurements if the full growing season for each of these years 
is encapsulated in these data.   

4.2.4.4.3  Notes on reporting productiv ity  Performance 

Productivity Performance is one of three metrics used to determine land productivity degradation, 
and as such it is not sufficient to classify land as degraded at the sub-indicator level using 
Performance alone.   

An important consideration when determining the extent over which productivity Performance is 
assessed is whether the analysis should extend across political borders.  These borders are 
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ecologically artificial and may truncate an LCEU, restricting the range of pixel values considered in 
the assessment.  The greatest ecological relevance may be provided by extending the analysis to all 
areas of the LCEU across borders, which provides a more comprehensive context for assessing 
productivity Performance. 

One potential consequence of extending across political borders, however, is that the determination 
of whether productivity Performance is degraded or not may be influenced by land use and 
management practices in areas over which the reporting country has no control.  If a reporting 
country decides to extend the assessment of productivity Performance to include international areas 
and detects significant impacts from such activities in areas over which they have no control, these 
impacts should be justified in the national reports.   

We recommend identifying pixels with an NPP (NDVI or other index value) less than 0.5 of the 
NPPmax as degraded in this assessment.  Countries may adjust this threshold according to other 
criteria or local knowledge if required, and this choice should be justified in their national report.  

4.2.5 Calculating the sub-indicator 

The Land Productivity sub-indicator is calculated by assessing the indications of degradation shown 
by the Trend, State and Performance metrics and interpreting their combinations to determine 
degradation at the sub-indicator level.  There are several ways that the land productivity metrics can 
be combined to determine degradation at the sub-indicator level.  (Note that this process relates to 
the integration of the metrics of the Land Productivity sub-indicator only, and is entirely separate 
from the “One Out, All Out” principle used to estimate SDG indicator 15.3.1.)   

Measurements of biological indicators are subject to various sources of error and the observed data 
may give a falsely optimistic or pessimistic reflection of the true conditions. When combining metrics 
to interpret land productivity degradation, we therefore recommend considering only the areas 
identified as Degrading in the Trend metric, Degraded in the State metric and Potentially Degraded 
in the Performance metric as these areas have the highest statistical confidence in their assessment.   

Version 1 of the GPG recommended combining the metrics as shown in the lookup Table 4-4.  This 
method identified pixels showing degradation as those with:  

1. A significant negative trend in any combination of degradation metrics; 
2. A trend that is not significantly negative with: 

a. Degradation indicated in the productivity State analysis;  
b. Degradation indicated in the productivity Performance analysis. 

This combination of metrics placed more emphasis on the assessment of Trend than State or 
Performance to determine degradation, primarily because the statistical test for Trend was more 
rigorous than for the other metrics.  In this second version of the GPG, however, the rigor of the 
tests for State and Performance has been increased, which provides the opportunity to identify 
other combinations of metrics as potential land productivity degradation.   

The combination of metrics presented in Table 4-4 strictly complies with the definition of land 
degradation adopted by the UNCCD, which includes a reduction of biological productivity (i.e. a 
significantly negative Trend constitutes degradation regardless of the State or Performance metrics).  
It could be argued, however, that a decline in productivity may not constitute degradation where the 
productivity level remains high.  This combination of metrics may also not detect degradation in 
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areas where the productivity level remains low for a long period of time, as both Trend and State 
identify degradation based on a reduction in NPP from a previously higher level.   

Table 4-4. Lookup table indicating combinations of productivity metrics for determining whether a pixel is degraded: classes 
1 to 5 show degradation, where Y is degraded and N is not degraded in that metric or pixel.  This combination of metrics 
may over-emphasise the extent of productivity degradation from declining Trend alone, and may under-emphasise 
degradation in areas where productivity levels remain low for a long period of time.  

Class Trend State Performance Degraded 
1 Y Y Y Y 
2 Y Y N Y 
3 Y N Y Y 
4 Y N N Y 
5 N Y Y Y 
6 N Y N N 
7 N N Y N 
8 N N N N 

 

One of the potential options provided by the improved metrics is to consider a reduction in 
productivity as degradation only when the level of productivity is low.  The Performance metric can 
identify degradation in areas where the productivity remains low compared to other land units 
within its LCEU.  

Ultimately, countries have the choice to use whichever combination of metrics and assessments of 
their significance they prefer to determine the extent of land degradation within their national 
boundaries.  These choices should be justified in the accompanying report, however, preferably with 
maps comparing the extent of degradation identified using the different combinations.  The extent 
of land productivity degradation identified in the reporting period should be added to the extent of 
degradation mapped during the baseline or previous reporting period which remains degraded in 
the current assessment.  

Table 4-5 presents an alternative interpretation of the combination of metrics that could be used to 
identify pixels showing degradation, and includes as degraded any land unit with: 

1. A significant negative trend with a degradation indicated in the State and/or Performance 
metrics; or 

2. A trend that is not significantly negative with: 
a. Degradation indicated in the State and Performance metrics;    
b. Degradation indicated in the Performance metric only. 
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Table 4-5.  Alternative lookup table indicating combinations of productivity metrics for determining whether a pixel is 
degraded: classes 1 to 5 show degradation, where Y is degraded and N is not degraded in that metric or pixel.  This 
combination of metrics may not identify degradation where the Trend of land productivity is decreasing but remains high, 
and it may help to identify degraded areas where productivity levels remain low for a long period of time.  Changes from 
Table 4-4 (which was included in GPG version 1) are shown in red.  

Class Trend State Performance Degraded 
1 Y Y Y Y 
2 Y Y N Y 
3 Y N Y Y 
4 Y N N N 
5 N Y Y Y 
6 N Y N N 
7 N N Y Y 
8 N N N N 

  

4.3 Comments and limitations 
Much of the guidance presented in this Chapter is based on the WAD method, which is best suited 
to assessing land productivity dynamics in water-limited, temperate regions.  The Chapter presents a 
process of analysing annual land productivity data in a way can be used to interpret a range of 
aspects of land productivity dynamics consistently between countries.  In reality, the seasonal 
dynamics of productivity vary greatly across the globe, and decisions on the most suitable vegetation 
index to adopt and time of year to assess peak productivity should be based on the best available 
local knowledge.  Each country will also differ in its land cover characteristics, access to datasets, 
analytical capability and development objectives.  Options are available for countries to adapt this 
guidance on land productivity assessment to meet their circumstances and needs, and more 
information about how to justify and report these choices is available in Section 2.2 

Degradation assessed during the baseline period will be strongly influenced by the specific climatic 
and land management conditions prevailing during that period, and consideration should be given to 
whether the baseline period is representative of ‘normal’ NPP conditions. In Australia for example, 
the millennium drought extended from the late 1990s to 2010 across the southern part of the 
continent, and included some of the most severe rainfall and temperature anomalies on record.  
Vegetation became severely water stressed in the latter part of this period, and subsequent 
comparison of contemporary productivity measurements with baseline conditions is likely to skew 
the assessment towards indicating higher recent productivity and potentially underestimate the true 
extent of land degradation. Calibrating the productivity measurements to adjust for moisture 
availability (described in Section B.2) can be used to highlight the potential influence of climatic 
conditions on the baseline period in this case.  

The improved statistical rigour of the sub-indicator assessments in this Version 2 of the GPG 
provides information on the severity of degradation and the confidence in the assessments.  Areas 
with a z-score between -1.28 and -1.96 are potentially degrading in the Trend metric, and areas that 
are at risk of degrading in the State metric.  The statistical confidence in these areas is lower than for 
the Degraded level, and areas identified as being “at risk of degradation” should not be included in 
national reports as being degraded.  These areas may be of interest for interpreting future 
degradation risk,  which may be useful for guiding efforts to achieve LDN (see Section 1.4 on LDN 
and Chapter 7 on assessing the magnitude of degradation for more information). 
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The suitability of alternative data sources will need to be assessed as data sources expire and/or new 
ones emerge. The availability of high resolution and locally calibrated global time-series datasets is 
likely to increase in future, including through specific global efforts to support the SDGs within 
CEOS77 and GEO78, which should improve the quality and comparability of data between countries 
and at larger regional and global scales. 

 
77 http://ceos.org/ourwork/ad-hoc-teams/sustainable-development-goals/ 
78 https://www.earthobservations.org/geo_sdgs.php 
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5 Carbon Stocks, Above and Below Ground 

5.1 Executive summary 

This chapter describes the methodology and data sources available for establishing baselines and 
evaluating change in the carbon stocks, above and below ground sub-indicator for reporting on SDG 
indicator 15.3.1. As outlined in the UNCCD decision 22/COP.11, soil organic carbon (SOC) stock is the 
metric currently used to assess carbon stocks and will be replaced by total terrestrial system carbon 
stock once operational.  

5.1.1 Role and calculat ion of  the sub- indicator  

Carbon stocks reflect the integration of multiple processes affecting plant growth as well as 
decomposition, which together control the gains and losses from terrestrial organic matter pools. 
They are elementary to a wide range of ecosystem services, and their levels and dynamics are 
reflective of soil type, land use and management practices. This chapter provides guidance on 
approaches that countries can use to determine baseline SOC stocks and estimate change in SOC 
stocks. Consistent with the IPCC guidelines, supplements and refinements (IPCC 2006; 2013; 2019), a 
range of datasets and processing options are presented with the level of accuracy, detail and 
processing complexity increasing from Tier 1 (broad methods with default values) to Tier 2 
(additional use of country-specific data) to Tier 3 (more complex methods involving ground 
measurements and modelling). Where possible, it is good practice for countries to use a national 
approach i.e., the highest tier practical, to reduce bias and uncertainty.  

Where country-specific data and capacities are unavailable, the Tier 1 method for estimating change 
in SOC stocks is informed by the equations in the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories (IPCC 2006), and the 2013 Wetlands Supplement (IPCC 2013) and 2019 Refinement (IPCC 
2019) to the 2006 guidelines. Changes in vegetation cover, including those in response to climate or 
land use or management, influence SOC stocks by altering the rates, quality, and location of plant 
litter inputs to soils as well as the rates of output from soils via microbial decomposition and physical 
transport (e.g., leaching). This implementation of the Tier 1 method uses information on land cover 
change along with: i) climate/land cover default change factors (available for land cover change, 
inputs and management) to estimate changes in carbon stock for mineral soils, and ii) default annual 
emission factors to estimate the losses of carbon following drainage and/or fire for organic soils. The 
IPCC Tier 1 methodology constructs reference SOC stocks (baseline SOC stocks) based on broad 
global estimates of default SOC stocks under natural vegetation, stratified by climate/soil type. 
Current implementations of Tier 1 use some form of predicted SOC spatial distribution for the 
baseline state. For change factors, the Tier 1 method is strongly reliant on land cover change and/or 
land management change to estimate changes in SOC stocks as well as delineation of Wetland areas 
as a proxy for organic soils.  

Where possible, the Tier 2 method should be employed to complement default values with national 
datasets (both for SOC baseline stocks and for change factors) even if they are only able to better 
specify certain components of the Tier 1 method. Reference SOC stocks can be determined from 
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high spatial resolution digital soil maps or from measurements, for example, as part of national soil 
surveys. Default management systems can be disaggregated into categories that better represent 
country-specific management impacts on SOC stocks based on empirical data. Compared with the 
use of default equations, a new alternative Tier 2 ‘steady-state’ method for mineral soils in Cropland 
Remaining Cropland addresses the additional complexity in SOC dynamics, subdividing the SOC pool 
into three separate sub-pools with fast, intermediate and long turnover times (IPCC 2019). This 
steady-state approach may be applicable to other land uses but requires further expert 
development and parameterisation. While SOC stock change is estimated based on land cover and 
land management change, it is possible for national authorities to arrive at a different assessment of 
change (i.e., positive, negative, or stable) from that of land cover given additional data and 
information (e.g. through identification of “false positives” or “false negatives”). However, 
consistency and transparency in reporting of such assessments is required. 

The Tier 3 method incorporates more advanced national methods which better capture annual 
variability in fluxes, such as country-specific digital soil mapping and time-series spatial land 
use/management and climate data, combined with calibrated and validated process-based models, 
and/or a measurement-based inventory with a monitoring network. Tier 3 provides the highest level 
of certainty in the estimates of SOC stock change but requires the most expertise and resources to 
implement and maintain. 

Most countries will use a blend of methods from Tiers 1-3, depending on their national requirements 
and availability of expertise and resources. Regardless of the methods used, the following are good 
practice principles to guide the development of a national method of computation for the carbon 
stocks sub-indicator: 

1. Identify key degradation processes that should be included in the country’s assessment of 
land degradation. 

2. Assess available data and estimation methods that can be used to determine the carbon 
stocks over the total land area for the country. This should include documenting the source 
data and relevant methods.  

3. Determine the baseline carbon stocks from which changes will be assessed.  
4. Determine the reporting period carbon stocks using the same data sources as the baseline 

period.  
5. Define a change assessment method that quantifies carbon stock changes and determines 

the status of change as being either an increase (improvement), decrease (degradation) or 
no change (neutral). 

6. Generate reports of land degradation based on an assessment of change from the baseline 
to the reporting period. Identify and justify potential “false positives”, i.e., increases in 
carbon stocks for land use transitions that are considered land degradation, and explainable 
anomalies.  

5.1.2 Changes from version 1 of the GPG 

In this revision, updates to version 1 of the GPG (Sims et al. 2017) have been made where the 
science was considered to have sufficiently advanced since version 1, or where new or additional 
guidance was required. In particular, the previous guidance has been expanded on by providing: 
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 Inclusion of additional terms and definitions; 
 Revisions to the methods for estimation of change in SOC stocks, including relevant updates 

and new guidance from the 2019 IPCC Refinement to the 2006 Guidelines; 
 Expanded guidance on the methods for assessment of ‘significant’ change in SOC stocks 
 Updates to the data sources available for estimating change in SOC stocks; 
 Expanded guidance on approaches for estimating change in total carbon stocks (i.e., above 

and below ground biomass, litter, dead wood and soil) and available datasets, with a view to 
transitioning from the current sub-indicator metric SOC stock to total carbon stock over 
time; 

 Additional guidance principles and diagrams to assist countries with the development of a 
national method of computation for the carbon stocks sub-indicator, including generating 
reports of land degradation. 

5.1.3 Interpretat ion and further work  

SOC is central to maintaining soil health and ecosystem functioning, and ensuring global food 
security, and is the current metric used to assess the carbon stocks above and below ground sub-
indicator. There are a range of methodological approaches that countries can use to estimate 
change in carbon stocks depending on available data and analytical capability. Although there has 
been much progress made, current global or national maps for estimating SOC reference stocks are 
currently not dynamic. Further work is required to address this, including improvements to global 
gridded models (e.g. time-stamped releases over several decades), and ideally, through well-
designed national monitoring networks.  

Compared with other sub-indicators, changes in SOC stock associated with changes in land use and 
management must be measured over longer periods. These changes are small relative to the very 
large stocks present in the soil as well as their inherent variability. A four-year reporting frequency 
proposed for the indicator is likely to be too short to detect SOC stock change where an on-ground 
monitoring approach is used, and may even be difficult to register change in less than 10 years 
(Smith 2004).  

Carbon stocks in non-forested ecosystems are typically largest in the soil pool, but in woody 
perennial systems the biomass pool tends to be largest. Further, in such systems, changes in SOC 
stocks may not always capture degradation. Thus, once operational, the use of total carbon stocks as 
the sub-indicator will provide a more comprehensive assessment of degradation, particularly in 
cases of conversion of forested systems to other land uses. However, further work is required to 
improve the spatial data available for the range of carbon pools.  

5.2 Methodology 

5.2.1 Rationale 

The methodological approach to this sub-indicator ranges from a broad Tier 1 default approach to a 
highly detailed and complex Tier 3 set of approaches consistent with the IPCC guidelines, 
supplements and refinements (IPCC 2006; 2013; 2019). The tiered approach to the method of 
computation (IPCC 2006) considers a range of datasets and processing options which are categorised 
by the level of accuracy, detail and processing complexity increasing from Tier 1 (general methods 
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with default values) to Tier 2 (additional use of country-specific data) to Tier 3 (more complex 
methods involving ground measurements and modelling).  

Factors such as the significance of the source/sink (proportional contribution to national inventory), 
available data, and analytical capability will ultimately determine which Tier is selected. It is good 
practice to use higher tiers for the measurement of significant sources/sinks. Investment in 
monitoring of SOC should prioritise sites where SOC is the key indicator such as in croplands and 
grazing lands where land productivity and land cover change are less reliable indicators of land 
degradation (e.g. for different cropland management practices; see Chotte et al. 2019).  

The default (Tier 1) method for estimating change in SOC stocks draws on the significant body of 
work of the IPCC, which has published the methodological guidance that Annex I countries have 
agreed to use in estimating greenhouse gas inventories for reporting to the United Nations 
Framework Convention on Climate Change. Of most relevance to the carbon stocks sub-indicator is 
the 2003 Good Practice Guidance for Land Use, Land-use Change and Forestry (IPCC 2003) and the 
2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006) which consolidates and 
updates previous guidance. The 2013 Supplement to the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories: Wetlands (IPCC 2014) fills gaps and extends the 2006 Guidelines and 
updates emission/removal factors including on wetlands and drained soils. Most recently, the 2019 
Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2019) 
provides some refinement to reference and change factors, and additional approaches for Tier 2 and 
3 methods.    

Methodological changes and refinements over time, often driven by the development of new 
datasets, are an essential part of improving the quality of sub-indicator estimates. It is good practice 
to change or refine methods for estimating carbon stocks/stock change when:  

 The available data have changed; 
 The previously used method is not consistent with the most recent IPCC guidance; 
 The category has become key; 
 The capacity for sub-indicator calculation has increased; 
 New methods have become available; 
 Errors have been identified and corrected. 

Ensuring the consistency of time series when there has been a methodological change or refinement 
is considered in Chapter 6. 

5.2.2 Landscape strati f ication 

The maximum equilibrium carbon content for a soil at a given location is determined by 
environmental factors such as rainfall, evaporation, solar radiation and temperature. A lack of 
nutrients and a limited capacity to store and supply water in a soil can reduce this potential 
maximum, as can other constraints to plant growth and microbial decomposition (e.g., toxicities). 
Within these constraints, the actual amount of organic carbon contained in a soil will be determined 
by the balance between carbon inputs and losses, which are strongly influenced by land 
management and soil type. Agricultural practices that alter rates of carbon input (e.g., plant 
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residues, compost, mulch, fertiliser addition) or loss (e.g., removal of crops, cultivation) change SOC 
stock.  

The IPCC defaults for SOC stocks and change factors use ‘strata’ based on factors such as climate and 
soil type. While ‘land use’ refers essentially to the six land cover IPCC categories (i.e., Forest Land, 
Cropland, Grassland, Wetlands, Settlements, Other Land), ‘land management’ refers to stratification 
of the main land uses. For mineral soils, SOC stock change factors are based on land use and 
management under different climatic regimes, while the defaults for reference stock, i.e., under 
native vegetation, are based on IPCC default climate zones and seven broad soil classes79. For 
organic soils, IPCC defaults stratify by climatic region.  

The IPCC term ‘stratum’ is consistent with LCEU terminology, where LCEUs can be defined based on 
available information affecting productivity such as land cover, climate, soil type and elevation. Here 
the term LCEU is used instead of the IPCC term ‘stratum’ to avoid confusion with land cover 
terminology. All land in an LCEU should ideally have common biophysical conditions and 
management history over the time period to be treated together for analytical purposes. In the 
context of the calculations described below, a ‘reporting unit’ is the spatial unit (e.g., watershed, 
polygon) reported on and is likely to be a mix of land cover classes, while an LCEU is a uniform land 
cover class within a reporting unit. 

5.2.3 Role and funct ion of sub-indicator in the context of the Indicator  

SOC is a fundamental part of the terrestrial ecosystem and changes in SOC can be used as a proxy for 
ecosystem and soil health. SOC is an indicator of overall soil quality associated with soil nutrient 
cycling, soil aggregate stability and soil structure, with direct implications for water infiltration, 
vulnerability to erosion and ultimately the productivity of vegetation, and in agricultural contexts, 
yields. The management of SOC is central to maintaining soil health and ensuring global food 
security (Lal, 2004) and ecosystem functioning. Consequently, one of the greatest priorities for 
action concluded by the Intergovernmental Technical Panel on Soils (ITPS) in their Technical 
Summary80 of the Status of the World’s Soil Resources (Action 2, page ix) is that “The global stores of 
soil organic matter (e.g. SOC and soil organisms) should be stabilized or increased. Each nation 
should identify locally appropriate SOC-improving management practices and facilitate their 
implementation. They should also work towards a national-level goal of achieving a stable or positive 
net SOC balance”. 

In the following sections, guidance is provided to implement the measurement, validation and 
reporting of land degradation processes associated with change in carbon stocks above and below 
ground. The guidance is designed to promote a consistent and objective approach for any reporting 
period.  

5.2.4 Key degradat ion processes relate d to this sub-indicator 

 
79 Default IPCC soil classes are defined in Volume 4 of the IPCC 2006 Guidelines, Annex 3A.5; IPCC default soil classes derived from the 
Harmonized World Soil Data Base are available at:  https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/41cb0ae9-1604-
4807-96e6-0dc8c94c5d22 
 
80 http://www.fao.org/3/a-i5126e.pdf 
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As a basis for objective and consistent reporting, it is good practice to state the key degradation 
processes relevant to a country and to create a table of these processes prior to determining change 
in carbon stocks. Key degradation processes related to the SOC metric of the carbon stocks above 
and below ground sub-indicator might include: urban expansion, deforestation/land clearing, 
overgrazing, unsustainable cropping practices, including tillage and burning or irrigation, and natural 
events such as intense fires or drought that substantially and/or persistently reduce vegetation 
cover and increase soil erosion. Some of these processes may be detectable through analysis of 
change in SOC stocks as methods for estimating changes in SOC stocks are strongly reliant on land 
cover change data, many of the degrading processes are likely to be inferred using land cover change 
(see Chapter 3), and some may be inferred using multiple indicators.  

5.2.5 Assessing avai lable  data 

For the carbon stocks sub-indicator, the primary data are: 

 Ground observations and measurements, and predictions based on them; 
 Spatial data including remotely sensed data or products predicted from these data.  

As outlined in IPCC (2006), it is good practice for all national data to be:  

 Adequate, i.e., capable of representing land-use categories, and conversions between land-
use categories;  

 Consistent, i.e., capable of representing land-use categories consistently over time, without 
being unduly affected by artificial discontinuities in time-series data;  

 Complete, which means that all land within a country should be included, with increases in 
some areas balanced by decreases in others, recognizing the bio-physical stratification of 
land if needed (and as can be supported by data); 

 Transparent, i.e., data sources, definitions, methodologies and assumptions should be 
clearly described. 

Minimum DQS and decision trees for determining the most appropriate data for calculating SDG 
Indicator 15.3.1 have recently been developed through multi-phase consultation with data providers 
and data users (GEO LDN Initiative, 2020). These standards, which may be under development and 
not currently available, aim to ensure consistency, coherence and comparability of data sets 
supplied by various global or national data providers in support of country efforts to monitor SDG 
Indicator 15.3.1. Cross-cutting and sub-indicator specific minimum DQS relevant to SOC have been 
developed and relate to spatial and temporal resolution, data pre-processing, data uncertainty 
assessment and monitoring update periods (Table 5-1).  

Two decision trees are provided - a cross-cutting decision tree (see Figure 2-2) which guides the user 
on whether to use global default data, investigate the building of additional country capacity or 
proceed with using national data, and a sub-indicator decision tree for assessing the desired 
standards for SOC datasets Figure 5-1). It is good practice to use these DQS and decision trees for 
verifying the best available data for calculating the sub-indicator.   

In addition to data uncertainty and inventory update period, the standards (GEO LDN Initiative 2020) 
recognise that spatial stratification of SOC data at a national level may need to be applied, but that 
this should not be a standard. The importance of stratification is likely to depend on local factors 
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including the size and heterogeneity of the country. Spatial stratification by land cover types, 
climatic regions and soil types is important to help differentiate changes in SOC stocks. Stratification 
could also be based on other factors such as NPP performance zones, prior land use, or degradation 
severity. The decision should be left to the individual nations.  

The type and availability of SOC data will vary by country. Data may be sourced from freely available 
global datasets, IPCC Good Practice Guidance (IPCC 2003), Guidelines (2006) and Supplements/ 
Refinements (IPCC 2013; 2019), and nationally contributed datasets. Global datasets include IPCC 
defaults and global soil organic carbon maps. A summary of existing freely available sources is 
provided in Appendix C.1. National and regional products are based on EO data for land cover at 
finer resolutions than for global products (see Chapter 3). Examples of existing continent and 
country baseline maps for SOC stocks are provided in Appendix C.2. 

Table 5-1. Cross-cutting and sub-indicator specific minimum data quality standards relevant to carbon stocks (from GEO 
LDN Initiative, 2020)  

Issue Suggested 
standard 

Comments 

Cross-cutting  

   Grid cell size 100 m National SOC stocks should aim for a 100 m grid, but this will depend in 
part on the in situ data collection. Suggested standard suitable. 

   Temporal 
coverage 

Specific to 
sub-indicator 

National SOC stocks should aim for temporal coverage in line with 
global products. Suggested standard suitable. 

   Analysis ready 
data (ARD) 

Use ARD Knowing the processing lineage is more important and should be 
provided. Suggested standard suitable.  

Sub-indicator specific  

   SOC data 
uncertainty 

Pixel based Datasets should aim for pixel level uncertainty. Suggested to further 
consultation required. 

   Soil inventory 
update period 

10 years Ambitious standard, probably more of a goal to strive for. Specific time 
period depends on local rates of change, the change methods used and 
local conditions. Suggested standard suitable. 
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Figure 5-1. Decision tree for determining the most appropriate data for calculation of the soil organic carbon stock change 
sub-indicator (from GEO-LDN Initiative, 2020).  

 

5 .2.6 Calculation of the sub-indicator 

A conceptual framework for quantifying changes in SOC stocks is provided in Table 5-2. The Tier 1 
method for reference SOC estimates and change factors is recommended only when national data 
and/or processing capacity is limited. Where possible, it is good practice for countries to use a 
country-specific approach (Tier 2 or Tier 3 method) to reduce bias and uncertainty, even if they are 
only able to better specify certain components of the default approach. Progressing from Tier 1 to 
Tier 3 methods represents a potential reduction in the uncertainty of SOC estimates, though at a 
cost of an increase in the complexity of measurement processes and analyses. 
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Table 5-2. Conceptual framework for quantifying changes in SOC stock 

Level of 
detail 

SOC stock baseline SOC stock changes 

Tier 1  Apply IPCC Tier 1 methods that relate SOC stock 
to environmental and management factors, 
with separate approaches and defaults for 
mineral and organic soils. As an alternative to 
IPCC default values, reference stocks can be 
determined from global digital maps of SOC. 

Apply IPCC Tier 1 methods to assess SOC stock 
change after default 20-year period1; methods 
differ for mineral and organic soils. Option to 
use global soil map data for reference stocks 
combined with default stock change factors.  

Tier 2 Apply IPCC Tier 2 method i.e., update of SOC 
reference stocks with country-specific values. A 
blend of data sources may be used. SOC 
reference stocks can be determined from 
national digital soil maps or from 
measurements (e.g., national soil surveys).   

Apply IPCC Tier 2 method using stock change 
factors with country-specific values. A blend of 
data sources may be used. Stock change 
factors can be determined from 
region/country-specific long-term experiments 
or other field measurements (e.g. 
chronosequence studies). 

Tier 3 Two general approaches: 

a) Use a national on-ground measurement-
based inventory with a monitoring network;  

b) Use calibrated and validated ecosystem 
(process-based) modelling which links the 
model and country-specific spatial datasets, 
such as soil maps, land use, climate, and 
agricultural activity (i.e. land use/management). 

 

a) Apply IPCC Tier 3 national soil monitoring 
method with large sampling density to 
minimise uncertainty, and to represent all 
management systems and associated land-use 
changes, across all climatic regions and major 
soil types;  

b) Apply ecosystem modelling for changed 
land-uses and management systems, 
calibrated/validated at points using results 
from new field measurements/monitoring. 

1 Default equations are based on linear relationships and have been modified to allow for different reporting periods. 

 

5.2.6.1  Default methods  of  estimation  

Where country-specific data/capability are yet to be developed, a default (‘Tier 1’) approach can be 
used, noting that a higher-tiered, country-specific approach is preferable. IPCC Tier 1 methods 
assume that following land use/management changes, carbon stock changes occur over a 20-year 
period, after which a new equilibrium stock is reached. The influence of land use and management 
on SOC is very different in mineral versus organic soil types (for discussion, see Section 2.3.3, IPCC 
2006). Therefore, separate guidance is provided for estimating carbon stock change in mineral soils 
and organic soils based on the IPCC good practice guidance and guidelines (IPCC 2003; 2006), and 
the recent supplement and refinement (IPCC 2013;2019). Using the IPCC Tier approach, carbon 
stocks in organic soils are not explicitly computed using Tier 1 or Tier 2 methods which estimate only 
annual carbon flux from organic soils (see below). Carbon stocks in organic soils can be estimated in 
a Tier 3 method (IPCC 2006; 2019).  
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Where both mineral and organic soil types are present, the equation for estimating the change in 
SOC stocks (Eqn. 2) in a reporting unit is modified from Equation 2.24 (Ch. 2, Vol. 4, 2019 Refinement 
to the IPCC 2006 Guidelines) to exclude inorganic carbon stocks:         

 
Equation 5-1 

Where: 

 = change in carbon stocks in soils in the reporting unit, t C ha-1; 

 = change in organic carbon stocks in mineral soils in the reporting unit, t C ha-1 

(Note: to convert from the units of t yr-1 derived from Eqn. 3a to t ha-1 here, multiply by the 
number of years in the reporting period and divide by the area of the reporting unit); 

 = loss of carbon from drained organic soils in the reporting unit, t C ha-1, (see Eqn. 4 

below) (Note: to convert from the units of t yr-1 derived from Eqn. 4 to t ha-1 here divide by 
the area of the reporting unit and multiply by the number of years in the reporting period); 

 = change in inorganic carbon stocks from soils in the reporting unit, t C ha-1 

(assumed to be 0 unless using a Tier 3 approach). (Note: to convert from the units of t yr-1 
derived from Eqn. 3a to t ha-1 here, multiply by the number of years in the reporting period 
and divide by the area of the reporting unit). 

Note: most reporting units will not include organic soils.  

Mineral soils: The Tier 1 approach considers globally-established reference stocks for SOC (0-30 cm) 
based on land areas that are stratified by IPCC climate zones and default soil classes (see Table 2.3, 
Ch. 2, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines), default management factors, and rules 
to derive SOC stocks for defined changes in land cover (e.g., Forestland to Cropland) and land 
management, with consideration of broadly defined ‘climate-soil’ classes (IPCC 2006; 2019). SOC 
stock change is derived by applying these rules while assuming a default time interval of 20 years 
(proxy for next SOC stock equilibrium) and a simplified linear rate of change. The stock change 
factors are very broadly defined and include:  

 A land-use factor (FLU) that reflects carbon stock changes associated with type of land use;  
 A management factor (FMG) representing the main management practice specific to the land-

use sector (e.g., different tillage practices in croplands);  
 An input factor (FI) representing different levels of carbon input to soil.  

All land in an LCEU should have common biophysical conditions (i.e., climate and soil type) and 
management history over the time period, to be considered together for analytical purposes. It will 
also be necessary to ensure that these units can be aggregated to the six classes in the IPCC default 
land use change legend used for aggregate reporting. Many reporting units will have more than one 
LCEU (particularly for soil type and management system). In such cases, spatially weighted averaging 
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is required. Change in organic carbon stocks in mineral soils is estimated using Equation 2.25 (Ch. 2, 
Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines) and reproduced here: 

              

                           

Equation 5-2 

Where:  

 = change in carbon stocks in mineral soils in the reporting unit, t C ha-1 yr-1; 

 = soil organic carbon stock in the last year of a reporting time period, t C; 

 = soil organic carbon stock at the beginning of the reporting time period, t C; 

 and   are calculated with the reference carbon stocks and stock change 

factors assigned according to the land-use and management activities and corresponding 
areas at each of the points in time (time = 0 and time = 0-T; T = number of years over a single 
reporting time period, yr); 

D = time dependence of stock change factors which is the default time period for transition 
between equilibrium SOC values, yr. Commonly 20 years, but depends on assumptions made 

in computing the factors  ,  and . If T exceeds D, use the value for T to 

obtain an annual rate of change over the reporting time period (0-T years); 

 SOCmineral = soil organic carbon stock in mineral soils in the reporting unit at a defined time, t 
C; 

c represents the climate zones that are present in a reporting unit; 

s represents the IPCC soil classes that are present in a reporting unit; 

i = the set of management systems that are present in a reporting unit; 

 = the reference soil organic carbon stock, t C ha-1; 

 = stock change factor for land-use systems or sub-system for a particular land-use, 

dimensionless [Note: FND is substituted for FLU in forest soil C calculation to estimate the 
influence of natural disturbance regimes]; 

 = stock change factor for management regime, dimensionless; 

 = stock change factor for input of organic matter, dimensionless; 

 = land area of the LCEU being estimated, ha.  



 

Good Practice Guidance | SDG Indicator 15.3.1 69 

 

IPCC default values can be used in the equations (see Appendix C.5).  If using global map products, it 
may be necessary for source data to be adapted to meet the requirements for reporting on the sub-
indicator at Tier 1. For example, baseline 0-30 cm SOC stocks will need to be derived from SOC 
concentration, bulk density, gravel fraction and soil depth layers (UNCCD 2018). Further, although 
change factors based on transitions from one land use to another (FLU) can be populated from the 
indicator for land cover and its annual transitions, there are currently no known global data at a 
sufficient resolution to obtain information for management (FMG) and input (FI) change factors 
(UNCCD 2018). Therefore, no changes can currently be applied when using global map products (i.e., 
FMG and FI are set to one).  

Organic soils: There are few updates to the methods for organic soils in the 2019 Refinement to the 
2006 IPCC Guidelines for National Greenhouse Gas Inventories. However, some additional guidance 
and emissions factors are provided for flooded land in Vol. 4, Ch. 7 of IPCC (2019). The basic 
methodology for estimating carbon emissions from organic (e.g., peat-derived) soils is to assign an 
annual emission factor that estimates the losses of carbon following drainage and/or fire (IPCC 2013 
Wetlands Supplement). Specifically, the area of drained and managed organic soils under each 
climate type is multiplied by the associated emission factor to derive an estimate of annual CO2 
emissions. Losses from organic soils are estimated using an adaptation of Equation 2.2 (Ch. 2, IPCC 
2013 Wetlands Supplement), reproduced here:  

 
Equation 5-3 

Where: 

 = total emissions from organic soils for the reporting unit, t C yr-1; 

= emissions from drained organic soils for the reporting unit, t C yr-1; 

= emissions from burning of organic soils for the reporting unit, t C yr-1 (Note: to convert 

from the units of t derived from Eqn. 6 to t yr-1 here divide by the number of years in the 
reporting period). 

Emissions from the drainage of peat soils are estimated as follows: 

  

Equation 5-4 

Where: 

= annual on-site emissions/removals from drained organic soils in a land-use 

category, t C yr-1. 

 = land area of drained organic soils in a land-use category in climate domain c, 

nutrient status n and drainage class d, ha.  
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 = emission factors for drained organic soils, by climate domain c, nutrient status 

n and drainage class d, t C ha-1 yr-1.  

Default values for carbon dioxide, methane and nitrous oxide emissions should be taken from Tables 
2.1, 2.3 and 2.5, respectively (Ch. 2, 2013 IPCC Wetlands Supplement). 

Emissions from peat burning are estimated in accordance with Equation 2.8 (Ch. 2, IPCC 2013 
Wetlands Supplement) as follows: 

 
Equation 5-5 

Where:  

 = Amount of CO2 or non-CO2 emissions from fire in the reporting unit, tonnes (t) 

= Area of peat burnt annually in the reporting unit, ha 

P = Average mass of peat burnt in the reporting unit for climate domain c and fire type f (t 
dry matter (d.m.) ha-1)  

f  1, 2 …F fire types, including wildfire and prescribed fire 

C = combustion factor, dimensionless; For all organic soil fires, the default combustion factor 
is 1.0, since the assumption is that all fuel is combusted (Yokelson et al. 1997) 

c represents the climate zones that are present in a reporting unit 

 = Emission factor in climate domain c for gas g (kg t-1 d.m. burnt)  

g   1, 2, 3 ... G greenhouse gases including carbon dioxide, methane and nitrous oxide 
(unitless)  

The value 10-3 converts  to tonnes.   

The amount of fuel that can be burnt is given by the area burnt annually and the mass of fuel 
available in that area. Default values are provided in Tables 2.6 and 2.7 of the IPCC 2013 Wetlands 
Supplement. Due to limited data available in the scientific literature, organic soils have been very 
broadly stratified according to climate domain (boreal/temperate and tropical) and fire type (wild vs. 
prescribed).  

5.2.6.2  National  methods  of  estimation 

At Tier 2, separate approaches are taken for mineral soils and organic soils.  

For mineral soils, countries may choose to use the same linear equations as the Tier 1 method in 
conjunction with country-specific factors to improve the accuracy of the relative change factors, 
reference SOC stocks, climate regions, soil types, and/or land management classification systems. 
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Country-specific values may be derived for all of these components, or any subset which would then 
be combined with default values. Example national datasets are provided in Appendix C.6.  

Reference SOC stocks can be determined from national digital soil maps or from measurements, for 
example, as part of national soil surveys. These sources will provide more representative values for 
an individual country and the ability to better estimate probability distribution functions that can be 
used in a formal uncertainty analysis (IPCC 2003). Reference stocks should be consistent across the 
land uses. Accepted standards for sampling and analysis of SOC concentration and bulk density 
(where using fixed depth) should be used and documented.  

At Tier 2, the default management systems can be disaggregated into categories that better 
represent country-specific management impacts on SOC stocks. However, this is only possible where 
there is sufficient detail in the underlying data to disaggregate the land into a more detailed set of 
management systems. Stock change factors can be estimated from long-term experiments or other 
field measurements (e.g. chronosequence studies) for a country or region. The depth of 
measurement and time frame over which the management difference has been expressed should be 
provided (IPCC 2006). Further, SOC stock estimates may be improved when deriving country-specific 
factors for FLU and FMG, by expressing carbon stocks on an ESM basis rather than a fixed depth basis 
(IPCC 2019).  

Two notable additions in the 2019 Refinement to the IPCC 2006 Guidelines are the inclusion of i) an 
optional alternative Tier 2 steady-state method for mineral soils of Cropland Remaining Cropland 
(Appendix C.3); and ii) a method at Tier 2/3 to estimate the change in mineral soil organic C stock 
due to biochar amendments to mineral soils (Appendix C.4).  

For organic soils, the Tier 2 method for calculating CO2 emissions associated with drainage of organic 
soils incorporates country-specific information into the inventory to estimate the emissions using 
the same calculations as provided for Tier 1. Potential improvements may include deriving country-
specific emission factors, specifying climate regions considered more suitable for the country, or 
using a finer, more detailed classification of management systems attributed to a land use category. 

An alternative Tier 2 approach to replacing defaults with country-specific reference stocks, change 
factors or emissions factors, is to use methods that relate SOC stock to environmental and 
management factors, using statistical learning methods such as state-of-the-art digital soil mapping 
studies, and the best available baseline data for SOC stock and environmental covariates (e.g., land 
cover) for a defined reference period. In this approach, relationships are derived from large 
databases with measurements of SOC content, bulk density and proportion of coarse fragments by 
layer, ideally with corresponding information on site factors (e.g., land use, land management) and 
environmental factors at the time of sampling (e.g. Batjes et al. 2020). Such relationships can now be 
derived routinely from digital soil mapping (Minasny et al. 2013; Arrouays et al. 2014; Hengl et al. 
2017; de Sousa et al. 2020).  

Typically, the relationships (regression models) are derived using machine learning approaches and 
are based on data from a large number of environmental factors (so-called ‘covariates’), mainly from 
remote sensing and other spatial datasets representing climate, terrain, parent material and land 
use. These relationships can be used to estimate the baseline SOC stock as well as changes over time 
by inserting the changed covariates (notably land use) in the regression model that predicts SOC 
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stock from covariates. The above soil mapping approaches make predictions at point locations. By 
implication, spatial aggregation is possible to any desired reporting unit.  

At Tier 3, more advanced national methods are used which typically better capture annual variability 
in fluxes, unlike Tier 1 and 2 approaches that mostly assume a constant annual change in carbon 
stocks over an inventory time period based on a stock change factor (IPCC 2006). Such approaches 
can address the non-linearity in transitions by using more advanced models, and/or by developing a 
measurement-based inventory with a monitoring network. In addition, Tier 3 inventories can 
capture longer-term legacy effects of land use and management.  

Ideally, Tier 3 involves: 

1. Nationally derived land cover classes and data for baseline SOC stocks, change factors and 
emission factors specific to national/local conditions; 

2. National data based on the integration of ongoing ground-measurement programs, earth 
observation data and models. 

Two general approaches using the Tier 3 method are recommended.  

The first approach uses a national measurement-based inventory with a monitoring network. At Tier 
3, a national soil monitoring method requires large sampling density to minimise uncertainty, and to 
represent all management systems and associated land-use changes across all climatic regions and 
major soil types. Further detail on sampling considerations is provided in Appendix C.6.  

The second approach combines measurements and/or country-specific digital soil mapping with 
calibrated and validated process-based ecosystem models to estimate changes in SOC stocks (Figure 
5-2). For example, country-scale Tier 3 assessments of SOC stocks have been developed for several 
countries including, Australia, Japan, Finland and USA (e.g. Shirato 2017; US EPA 2017; DISER 2020; 
Statistics Finland 2019). These Tier 3 approaches use calibrated and validated ecosystem (process-
based) models (e.g. RothC, Century) which link the model and country-specific spatial datasets, 
including soil maps, land use, climate, and forest/agricultural activity (e.g. Lee et al. 2020). Detailed 
examples of Tier 3 mineral soil C stock change methods are provided in Ch. 2, Box 2.2D of IPCC 2019.  
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Figure 5-2. Schematic of possible national Tier 3 approach for estimating change in soil organic carbon stock. 

 

As outlined for Tier 2 methods, countries can now estimate the change in mineral soil organic C 
stock due to biochar amendments to mineral soils at higher tiers (IPCC 2019; Appendix C.4). Soil 
erosion and/or deposition can have significant effects on measured SOC stocks (Chappell et al. 2016) 
but their effects on stock changes are not considered to be embedded in factors for land-use change 
or land management. Tier 3 methods can include lateral flows of SOC associated with soil erosion 
and deposition, for example, through the use of well-tested models that capture these dynamics 
with input data to make estimates of the effect of past erosion/deposition on SOC stocks (e.g. Van 
Oost et al. 2005) and evaluating the model predictions with empirical data (IPCC 2019). 

At national scale different approaches can be used to derive estimates of SOC stocks, such as 
country-specific maps. Alternatively, global maps could be used to improve national estimates where 
they are used as input into national models (e.g. global data are used as another covariate in the 
national modelling). If new data could be collected, then design-based sampling (e.g. DotEE 2018) 
will produce unbiased estimates of SOC stocks over the total land area.   

5.2.6.3  Estimating uncertainty 

It is good practice to report uncertainties in estimates and minimise uncertainty as far as practical, 
even if these uncertainties are not used in a formal sense (i.e., in statistical tests). IPCC (2006; Vol. 1, 
Ch. 1, p 1.6) specifies two good practice guidelines for GHG inventories which are also relevant here:  

(i) “neither over- nor underestimates so far as can be judged”;  

(ii) “uncertainties are reduced as far as practicable”.  

This means ensuring estimates are unbiased (satisfying criterion (i)), and that all of the key, non-
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negligible error sources are recognised and accounted for (satisfying criterion (ii)) (Figure 5-3).  

Quantifying bias can be problematic, as it requires knowledge of the ‘true’ underlying value, which is 
almost always unknown. Sources of bias can arise from measurement errors, such as incorrectly 
calibrated weighing scales, and biased model predictions arising from the use of incomplete or non-
representative field data. When identified, bias should be corrected prior to further analysis. 

Below is a brief description of the IPCC guidance on how uncertainty is expressed in the default 
approach and methods for combining uncertainties to generate an overall uncertainty estimate. 
Guidance on how the individual uncertainties (e.g., in the areal estimates, change factors, emissions 
factors) are calculated is not provided here, but approaches to this are covered in detail elsewhere. 
Approaches for assessing uncertainty in Tier 2 and 3 methods are briefly discussed.  

The default method recommended by IPCC (2006) is the use of a 95% confidence interval i.e., the 
interval that has a 95% probability of containing the unknown true value. It is good practice to report 
the 95% confidence interval with estimates of SOC stocks. This could also be expressed as a 
percentage uncertainty, defined as half the confidence interval width divided by the estimated value 
of the quantity multiplied by 100.81  

-10 -8 -6 -4 -2 0 2 4 6
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density

True value
value

Measured

Bias

Precision  
Figure 5-3. The accuracy of an estimate comprises two components. (i) Precision (referred to as uncertainty in the text) 
describes the variability around the estimated value. (ii) Bias describes the degree to which the estimated value deviates 
from the true (but often unknown) population value.  

The default method for combining uncertainties is based on error propagation. Where uncertain 
quantities are to be combined by multiplication and they are independent, a simple equation (based 
on Equation 3.1, Vol. 1, Ch. 3, IPCC 2006) for the uncertainty of the product, expressed in percentage 
terms is: 

 
81 Note that this uncertainty is twice the relative standard error (in %), a commonly used statistical estimate of relative uncertainty. 
Percentage uncertainty is the main way that uncertainty is provided in the relevant IPCC default tables (see section on Total Carbon 
Stocks). 
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Equation 5-6 

Where: 

Utotal = percentage uncertainty in the product of the quantities (half the 95% confidence 
interval divided by the total and expressed as a percentage) 

Ui = percentage uncertainties associated with each of the quantities, i = 1, …, n 

Where independent uncertainties are to be combined by addition or subtraction, a simple equation 
(based on Equation 3.2, Vol. 1, Ch. 3, IPCC 2006) for the uncertainty of the sum, expressed in 
percentage terms is: 

 
Equation 5-7 

Where:  

Utotal = the percentage uncertainty in the sum of the quantities (half the 95 percent 
confidence interval divided by the total (i.e., mean) and expressed as a percentage). This 
term ‘uncertainty’ is thus based upon the 95 percent confidence interval. 

xi and Ui = the uncertain quantities and the percentage uncertainties associated with them, 
respectively. 

Worked examples of the calculation of uncertainty using default methods are provided in Appendix 
C.5.  

For higher tiers: where map products are used, it is good practice for these to be accompanied by 
uncertainty quantifications (e.g. Viscarra Rossel et al. 2014; de Sousa et al. 2020). Where sampling 
methods are used, it is good practice to use approaches that result in unbiased estimates. 
Approaches based on design-based samples, where sample points selected by probability sampling 
(i.e. random) are assumed to be unbiased (Cochran 1977). Model-based approaches, where sample 
points can be systematically (i.e. non-randomly) located and need not conform to design-based 
principles, generally require additional validation checks to ensure estimates are unbiased 
(McRoberts et al. 2019). This can be achieved by comparison of the model predictions using 
statistical internal cross-validations and validation with independent data not used in the original 
model fitting. Statistics that evaluate the model’s precision and bias should be used to ensure that 
the model shows no systematic lack of fit to the sample data, and through checks to ensure the 
sample data on which the modelling is based are representative.  

5.2.6.4  Determining basel ine stocks and degradation status 

In order to measure the change in the extent of SOC degradation over time, and to assess LDN, it is 
necessary to calculate the extent of SOC degradation in the baseline period.  This involves comparing 
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estimated SOC stocks in the year 2015 (the baseline year) with one other previous year to measure 
change in SOC stocks.  Years that are further apart in time may exhibit a greater difference in their 
SOC levels, which may result in a larger extent of apparent SOC degradation than comparing years 
that are closer together in time.  Ideally, the previous year should be in the baseline period from 1 
Jan 2000 to 31 Dec 2014. However, given the potentially slow rate of change of SOC stocks 
compared to the other sub-indicators, and to accommodate different data densities at the national 
scales, it may be necessary to include data from years before 1 January 2000 to calculate a robust 
estimate of SOC stocks in the previous year. 

An historical averaging approach to minimize the effects of seasonal and inter-annual climate 
variability is the simplest option for estimating the baseline. Estimation of SOC stocks in the baseline 

period ( for a given reporting unit is based on a national-level assessment of carbon stocks 

during the baseline period (2000-2015) or the most appropriate epochs from the period. Global land 
cover data sets are now available annually (see Chapter 3). The absolute numerical value of the 
metric for each reporting unit is quantified by averaging across an extended (10–15 year) period 
prior to the year 2015 (t0), at annual or less frequent intervals depending on data availability and 
resources. The availability of annual land cover products also allows extrapolation of a trend fitted to 
historical data. This approach requires confidence that the past trend is likely to be representative of 
the future and is appropriate only if there is a clear trend in historical data (GFOI 2016).  

An initial baseline (t0) is required to derive the indicator. Below are two options for estimating initial 
baseline status at t0 at differing temporal scales for the SOC stocks metric, both of which are likely to 
have large uncertainties. 

Because the maximum equilibrium carbon content for a soil at a given location is determined by 
environmental factors, to inform the initial baseline status at t0, a benchmarking approach (i.e., 
assessing whether the SOC stocks in the baseline period are low, high or average relative to some 
potential value for a given climate, soil type and so on) could be used. As a starting point, the 
updated IPCC (2019) reference SOC stocks under native vegetation, reflecting default climate regions 
and soil types, could be considered as the benchmark, but ideally, national benchmarks (e.g., derived 
from largely undisturbed systems) would be used for assessment of large spatial extents. The 
determination of initial baseline status would then be guided by comparing the actual average value 
with the benchmark or potential value within some agreed significance bounds, where baseline 
values less than the relevant benchmark and below agreed significance bounds would be considered 
degraded. However, there are a number of issues with this option. For example, although the 
updated 2019 IPCC defaults for SOC reference stocks for native vegetation have reduced the error 
bounds for a number of climate zone × soil class combinations (relative to the IPCC 2006 defaults), 
there are still some defaults with very large error bounds (nominally 90% expressed as 2 × SD as a 
percent of the mean), so a nominal bound would need to be defined, both globally as a default and 
nationally as each country adapts these significance bounds to their particular circumstances. 
Furthermore, native vegetation may not be considered the most appropriate benchmark in some 
situations. Land use history varies widely among countries, ranging from very recent change from 
native vegetation, to centuries old agricultural systems. Ideally, country-specific benchmark values 
with lower uncertainty would be derived and used (Batjes 2011). 
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Another option is similar to that used in Chapter 4 for the sub-indicator on land productivity, where 
change/status over only the baseline period (2000-2015) is used to inform the initial baseline status 
at t0 of each land unit. While this approach may be valid for land productivity where changes occur 
over short (e.g. seasonal to annual) timeframes, SOC stocks are likely to change over longer (e.g. 
multi-year to decadal) timeframes. If this approach were used, ‘epochs’ (e.g., 2013-2015 SOC stock 
with 2000-2002 SOC stock) rather than annual values could be compared, to determine ‘trajectory’ 
and relative change. Then the same approach used to compare t0 and tn could be used to compare 
the start and end periods of the baseline.  

Rather than relying on spatial analysis alone, most assessments of SOC stock change involve the 
integration of multiple lines of evidence from diverse sources, such as field experiments, paired 
sites, monitoring sites, scientific studies, and land management surveys (FAO & ITPS 2015; SoE 
2011). When deriving baseline estimates from ground-based measurements, the sampling design 
used must provide unbiased estimates of the mean SOC stock and the sampling variance (de Gruitjer 
et al. 2006; Chappell et al. 2013; Viscarra Rossel et al. 2016a). This can be achieved using a design-
based approach. Some examples of the types of data for SOC stock that could be used to inform a 
baseline are provided in Table 5-3.  

 

Table 5-3. Types of data that could be used to derive a SOC stocks baseline. 

Data type Typical scale 

Default values1 All scales 

Soil maps All scales 

Historical point data National/sub-national 

Spatial monitoring data2 National/sub-national 

Intensive monitoring data3 Sub-national 

Experimental data3 Sub-national 

Models4 All scales 
1 for reference stocks and stock change factors for land use, management and climate units 
2 e.g., national grid 
3 from ground-based sampling or new sensing technologies such as visible–infrared 
spectroscopy (see Appendix C.6) 
4 calibrated/validated using ground measurements 

 

The choice of method for estimating change in SOC stocks by a country will largely depend on the 
current and likely future availability of data but will also have implications for determining the SOC 
baseline. Baselines could be derived in two distinct ways: 

1. As estimates of total SOC stocks for a particular land use/management stratification; 

2. As spatially explicit baselines. 

For option 1, estimates could be derived from the global datasets or using a national approach. The 
global approach, where default values are applied to the land stratification data from EO to derive 
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the baseline stocks (or reference stocks as per IPCC 2019) described in the calculations below, or 
using global soil maps of carbon such as SoilGrids250m v.282, OpenLandMap83, or finer scale 
continental maps such as the 30 m pan-African iSADsoil84. However, it is likely that such estimates 
are subject to large bias and uncertainty, especially in areas with relatively unique combinations of 
environmental factors and/or limited representation.  

Alternatively, a national approach where countries either: i) use the same linear equations as the 
global default method in conjunction with country-specific factors to improve the accuracy of the 
relative change factors, reference SOC stocks, climate regions, soil types, and/or land management 
classification systems, or ii) national maps, such as the 90 m grid SOC stock baseline used in Australia 
(Viscarra Rossel et al. 2014; 2019) to improve the accuracy of the reference SOC stocks. This is likely 
to reduce bias and uncertainty in the estimates of baseline stock, but the variability of SOC stock 
needs to be accurately quantified.  

For option 2, when deriving a spatially explicit baseline, the appropriate resolution would need to be 
defined. The suggested data quality standards (GEO-LDN Initiative 2020) are a minimum 100 m 
spatial resolution (Table 5-1), noting that this is not yet available for global datasets, but is available 
at continental scale (Africa) and is expected globally within this reporting cycle. Other hybrid 
methods are possible, such as a spatio-temporal data model assimilation approach that uses easily 
accessible EO data for the updating but is underpinned by on-ground monitoring. The field of SOC 
monitoring is rapidly evolving and numerous techniques, systems and approaches are expected to 
become operational in the next several reporting cycles.   

Methodological changes and refinements, largely in response to scientific and technical advances in 
datasets, are an essential part of improving the quality of sub-indicator estimates. Where possible, 
all estimates in a time series should be estimated consistently, using the same method and data 
sources in all years. Using different methods and data in a time series may introduce bias because 
the estimated trend will reflect not only actual changes in carbon stocks but also those from the 
methodological changes/refinements. It is good practice to ensure time series consistency by 
making appropriate recalculations following any methodological changes or refinements (IPCC 2006, 
see Chapter 6).  

5.2.6.5  Estimating change in SOC stocks  

A hybrid approach is recommended, using the trend (or the direction of change) in the metric over 
the reporting period as well as the magnitude of the relative change in carbon stocks between the 
baseline and the current estimate to assess and evaluate change. This approach assesses whether 
there has been a (significant) negative change in SOC stocks between the baseline period and the 
reporting period for a given reporting unit, and makes no assumptions about the initial status of SOC 
stocks for that particular reporting unit.   

Once the baseline SOC stocks and the SOC stocks at the end of the reporting period for a given 
reporting unit have been consistently estimated (using any of the Tier 1-3 approaches described in 

 
82 https://www.isric.org/explore/soilgrids 
83 https://www.openlandmap.org 
84 https://www.isda-africa.com/isdasoil 
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the previous sections), the relative percentage change in SOC stocks (i.e., whether carbon stocks are 
increasing, decreasing or stable) is calculated as: 

 
Equation 5-8 

Where:  

= relative change in soil organic carbon for reporting unit (%) 

 = baseline soil organic carbon stock for reporting unit (t C ha-1) 

 = soil organic carbon stock for final reporting period for reporting unit (t C ha-1). 

One approach to assessing change in SOC stocks is based on tests for statistical significance and 
compares the average monitored SOC stock with the upper and lower bounds of the average 
baseline SOC for the same unit of land. If the average for the same unit of land falls: 

i. Outside the lower bounds of the 95% confidence interval (measured as twice the standard 
deviation) the area would be considered degraded (significant decline in SOC); 

ii. Outside the upper bounds of the 95% confidence interval (measured as twice the standard 
deviation) the area would be considered improved (significant increase in SOC); 

iii. Within the 95% confidence interval, the area would be considered stable (no transition). 

An alternative statistical approach would be to assess the 95% confidence interval of the difference 
in SOC stocks between the baseline and the reporting period for each land cover class/unit by 
combining uncertainties as described above. If the 95% confidence interval of the difference does 
not cover zero, then the change is significant, with the direction of change determined from Eqn. 9.  

Given the high spatial variability of the data for SOC stocks and the increasing interest in sub-
national accounting, it is likely that the confidence intervals will be large, and thus the two statistical 
approaches described above may not detect significant change even if degradation is occurring (i.e., 
resulting in a Type II error, or “false negative”, where a false null hypothesis is incorrectly retained). 
This is particularly likely if using the default approach, where, for example, reference stock estimates 
(IPCC 2003; 2006) have associated uncertainty of up to ± 90%. Based on this limitation, we conclude 
that statistical significance is likely to be a poor criterion for assessing degradation associated with 
decreased SOC stock for the default approach.  

The ‘false negative’ problem is also likely to occur using higher Tier methods. For example, Box 3.0 in 
Vol. 1, Ch.3, IPCC (2019) provides an example of the calculation of uncertainty for SOC change using 
the United States as a case study for the Croplands Remaining Croplands land use category. Using 
Tier 1 and Tier 2 approaches the reported uncertainty (represented as 95% confidence intervals) was 
±59% and ±40%, respectively. A Tier 3 analysis using a calibrated ecosystem model gave ±16%. Thus, 
relying on an approach which concludes degradation has occurred only if the reported change 
exceeds these confidence intervals, even using the Tier 3 approach, may result in an incorrect 
assessment of degradation (i.e., false negative). In the event timeseries of SOC become available, 
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then this would allow degradation to be detected as a statistically significant trend over time, such 
as using the methods depicted in Figure 4-4 for changes in land productivity.      

An alternative approach may be to assess both the direction of change and magnitude of the relative 
percentage change (Eqn. 5-9) in SOC stocks, relative to some defined threshold, between the 
baseline and reporting period. Then, for SOC stocks, the method of determining the status of change 
will be defined as:  

 Degraded: Reporting units with more than e.g. 10% average net reduction in SOC stocks 
between baseline and current observations; 

 Not degraded: Reporting units with less than e.g. 10% average net reduction, no change or 
an average net increase in SOC stocks between baseline and current observations. 

As a starting point, an arbitrary >10% change threshold is suggested (e.g. see meta-analysis by Guo 
and Gifford 2002). Subsequent refinement and justification of this threshold value will be needed. 
This refinement is likely to be a country decision based on available information, practicalities, 
expert opinion and risk assessment among other factors and will be dependent on the method used. 
Figure 5-4 provides guidance on possible approaches that could be used to assess ‘significant’ 
change in SOC stocks for a reporting unit based on the methods described in Table 5-2. At Tier 1 
where no country-specific data are available, the 10% threshold assessed against the baseline is 
suggested, while for Tier 2 and 3 approaches, it is suggested that countries refine the threshold 
value based on available country-specific information on measured, mapped and modelled datasets. 
For example, local climate, soil type and vegetation types regulate spatial variability of SOC.  Further, 
similar to deriving country-specific stock change factors (Table 5-5), countries could refine the 
threshold based on long-term experiments or other field measurements (e.g. chronosequence 
studies) demonstrating the impact of land use/management change on SOC stocks. The examples 
provided in Appendix C.5 give some indication of the magnitude of change that might be estimated 
using the Tier 1 default method. Two contrasting scenarios under the default approach give both an 
11% increase based on changed management (reduced tillage) of 80% of the area of a reporting unit 
that was annual cropland (no degradation), and a 26% decrease based on conversion of 70% of the 
area of a reporting unit from native forest to annual cropland (degradation).  

Others have suggested that interim procedures are required so that assessments of change can be 
based on risk, probability and expert opinion (Vaughan et al. 2001). There are several options for 
this, including:  

 Simulation modelling to determine whether suspected trends in SOC stocks are likely to 
become clear; 

 Assembling panels of experts to undertake critical reviews and judge whether a perceived 
problem is significant – these panels would draw on all lines of evidence (e.g. process 
understanding, published literature, anecdotal evidence, initial monitoring results, 
simulation modelling); 

 Engaging panels of experts in creative scenario writing to thoroughly consider a range of 
future states. These scenarios can be used to devise programs of investigation that lead to 
early detection (Munn 1988).  
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Such procedures could be used to inform refinement of the threshold value as suggested in Figure 
5-4.   

 
Figure 5-4. Guidance on possible approaches to assessing ‘significant’ change in soil organic carbon stocks for a reporting 
unit. 

5.2.6.6  Summary of Computat ional Steps  

1. Assess data options (see Section 5.3.5) and select estimation method (i.e., Tier 1, 2 or 3; see 
Table 5-2). 

a. Where a default approach (Tier 1) is used: 

a. Reference soil carbon stocks will be determined and documented for  climate 
regions and soil types;  

b. Stock change factors and emission factors will be determined and documented for 
all land uses/inputs/management systems, and where needed, any additional sub-
types. 

b. Where country-specific methods (Tiers 2 and 3) are used: 

i. Apply a Tier 2 method i.e., update SOC reference stocks with country-specific values. 
SOC reference stocks can be determined from national digital soil maps or national 
soil surveys; 

ii. Apply a Tier 3 method such as a national on-ground measurement-based inventory 
with a monitoring network and/or calibrated and validated ecosystem (process-
based) modelling which links the model and country-specific spatial datasets, such 
as soil maps, land use, climate, and agricultural activity. 

2. Assess SOC stocks within each LCEU of the defined disaggregation scheme for the baseline 
period. Generate an average SOC stock for each identified reporting unit for the baseline 
period, including the 95% confidence interval. 
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3. Compare the average SOC stock in the reporting period with the average baseline SOC stock 
for the same reporting unit by calculation of the relative percentage change (Eqn. 5-9).  

4. Apply the most appropriate method to assess whether change results in a significant 
decrease in SOC (degradation), an increase in SOC or no change (Figure 5-4).  

A wide range of methods are available for estimating uncertainty, ranging from the relatively simple  
Equation 5-6 and Equation 5-7 for combining uncertainties when multiplying (Equation 5-6) or 
adding /subtracting (Equation 5-7) values together, through to complex Monte Carlo simulations 
embedding complex chains of calculations.  There is no one correct approach, and methods for 
uncertainty analysis need to be selected based on the nature of the data being combined. Appendix 
C.5 provides example uncertainty calculations for the default approach. 

5.2.7 Report ing the sub- indicator 

The following good practice principles apply to the reporting process. 

 Where possible, provide two national SOC stock maps, one for the baseline period and one 
for the reporting period. These maps should have the same spatial precision (e.g. pixel 
resolution), use the same approach and be accompanied by an uncertainty estimate. 

 Provide SOC stock change information based on the difference between the reporting year 
and baseline year. This will include: 

- Where possible, a national map that shows the location of SOC stock change; 
- A table that identifies the total area of land that is associated with each major land 

cover transition and SOC stock change;  
- A national map that shows where degradation has occurred, and ideally the 

confidence in the assessment of the degradation where possible. 
 Justify why any reporting units identified as degraded should not be included in the overall 

indicator calculation. This should be based on the identification of “false positives”, where 
SOC stocks may be increasing for land use transitions that are considered land degradation 
(see Section 2.2.2). 

 Justify why any reporting units not identified as degraded should be included in the overall 
indicator calculation. This should be based on the identification of “false negatives”, where 
SOC stocks may be decreasing for land use transitions that are considered land improvement 
(e.g. weed removal; see Section 2.2.2). 

5.2.7.1  Compar ison of  degradation extent  between basel ine and report ing per iods  

It is good practice to apply consistent approaches for determining baseline and reporting period SOC 
stocks for assessment of whether SOC stocks are increasing, decreasing or stable. Where a default 
approach is used, the same equations used for estimating baseline SOC stocks should also be used in 
the reporting period. For higher tier level, direct measurement methods (see Figure 5-4), 
standardized spatial and temporal sampling should be used for baseline and reporting period 
assessments (de Gruitjer et al. 2006; Brus et al. 2014). Similarly, ecosystem process-based modelling 
methods should be supported by appropriate calibration and validation sampling through time. 
Computation of the carbon stocks sub-indicator requires that the area of land in each land unit at 
times t0 and tn is identical, and that the same pools of carbon (including reference depths for SOC) 
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are included in all time steps. Land use categories and estimates of carbon stocks may change with 
improved knowledge and therefore may be retrospectively corrected (see Chapter 6).  

5.2.7.2  National  and sub-national contexts 

In general, areas with long-term declining carbon stocks may be considered degraded while areas 
with increasing carbon stocks may be considered improving. In some cases, carbon stocks may be 
increasing for land use transitions that are considered land degradation (i.e., false positives), such as 
woody encroachment (i.e., land cover change from grassland to shrubland) or invasion by alien plant 
species (weeds). Conversely, there may also be circumstances where carbon stocks are decreasing 
for land use transitions that are considered improvements in terms of degradation (i.e., false 
negatives), such as weed removal, woody plant removal or transition from irrigated to dryland 
agriculture. In other cases, an average computed for a country may hide areas of intense 
degradation (i.e., hotspots) or improvement (i.e., brightspots). 

It is good practice to contextualize global and regional data sets with national and where possible, 
sub-national level, information. 

Assessment of false positives or false negatives, or degradation hotspots or bright spots requires 
knowledge and interpretation at the local level. Assessment approaches could include using: 

 site-based data;  
 qualitative information; 
 stakeholder perspectives from surveys, workshops, in-depth interviews; 
 establishment of expert panels.  

With respect to false positives/negatives, the use of a degradation interpretation matrix (Sims et al. 
2020) is one way to improve the transparency and consistency of degradation labelling between 
countries and regions. However, transparency will require that the details are clearly communicated, 
and consistency will require agreement on which contexts constitute false positives or false 
negatives (see Section 2.2.2).  

5.2.7.3  Transparency in  report ing 

It is good practice for countries to provide transparency in reporting to: 

 Allow assessment of the level and trend of carbon stocks over time; 
 Provide information on the drivers of carbon stocks and changes; 
 Build trust in the information provided by assuring its quality; 
 Ensure comparability with reports by other countries. 

To achieve this, reporting should aim to be complete, consistent, and accurate with respect to the 
information provided. 

5.2.8 Total carbon stocks  

Consistent with the UNCCD decision 22/COP.11, once operational, the metric for the carbon stocks 
sub-indicator will be broadened from SOC stock to total carbon stocks in all pools (i.e., above and 
below ground biomass, litter, dead wood and soil). This section expands on version 1 of the GPG 
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(Sims et al. 2017) by providing further detail on the current methods and datasets that could be used 
to estimate total carbon stocks. 

As for SOC stocks, the tiered approach to the methods for estimating change in total carbon stocks 
considers a range of datasets and processing options with the level of accuracy, detail and 
processing complexity increasing from Tier 1 (general methods with default values) to Tier 2 
(additional use of country-specific data) to Tier 3 (more complex methods involving ground 
measurements and modelling). Frequently, national assessments combine methods from lower Tiers 
with those of higher Tiers for pools which are less significant or too costly to measure. Thus, a 
combination of tiers is usually employed for total carbon stocks.  

The type and availability of data will vary by country. These data are sourced from freely available 
global datasets, IPCC Good Practice Guidance (2003), IPCC Guidelines (2006) and other documents 
(e.g., IPCC Wetlands Supplement 2013, 2019 Refinement to the IPCC 2006 Guidelines) and nationally 
contributed datasets. Where country-specific data are not available, it is good practice to apply the 
best available defaults for biomass carbon stocks to national land cover maps obtained by Earth 
observation data. Where available and considered robust and representative, it is good practice to 
use global spatial datasets for biomass carbon stocks as an alternative to using defaults. 

5.2.8.1   Default  Methods  

Where country-specific data and capacities are currently lacking, a default or Tier 1 method can be 
used to estimate the total carbon pools. The IPCC provides a systematic approach for estimating 
carbon stock changes in biomass and debris (IPCC 2003, 2006, 2013; 2019). Changes in ecosystem C 
stocks are estimated for each land-use category, including both land remaining in a land-use 
category as well as land converted to another land use. The equation for estimating the change in 
total carbon stocks (Eqn. 5-10) in a reporting unit is modified from Equation 2.3 in Ch. 2, Vol. 4 of the 
2019 Refinement to the 2006 IPCC Guidelines (IPCC 2019) and excludes harvested wood products: 

 
Equation 5-9 

Where: 

∆C = total carbon stocks in the reporting unit 

∆CAB = carbon stocks in live aboveground biomass in the reporting unit 

∆CBB = carbon stocks in live belowground biomass in the reporting unit 

∆CDW = carbon stocks in dead wood in the reporting unit 

∆CLI = carbon stocks in litter in the reporting unit 

∆SOC = organic carbon stocks in soil in the reporting unit 

As outlined in IPCC (2006; 2019), depending on country circumstances, stock changes may not be 
estimated for all pools shown in Equation 5-10. There are simplifying assumptions about some 
carbon pools under Tier 1 methods (change in below-ground biomass carbon stocks are assumed to 
be zero, dead wood and litter pools may be combined as ‘dead organic matter’ and these stocks are 
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assumed to be zero for non-forest land use categories) but for forest land converted to another land 
use, default values for estimating dead organic matter carbon stocks are provided.  

Under the IPCC guidance, there are two valid approaches to estimating stock changes: The Gain-Loss 
Method is a process-based approach that estimates the net balance of additions to and removals 
from a carbon stock and the Stock-Difference Method which estimates the difference in carbon 
stocks at two points in time. Change in biomass and debris pools is estimated using either Equation 
5-10 (Gain-Loss Method) or Equation 5-11 (Stock-Difference Method) (Ch. 2, Vol. 4, 2019 Refinement 
to the IPCC 2006 Guidelines) and reproduced here: 

 
Equation 5-10 

Where: 

∆C = annual carbon stock change in the pool, t C yr-1 

∆CG = annual gain of carbon, t C yr-1 

∆CL = annual loss of carbon, t C yr-1 

or 

    

Equation 5-11 

Where: 

∆C = annual carbon stock change in the pool, t C yr-1 

 = carbon stock in the pool at time t1, t C 

 = carbon stock in the pool at time t2, t C 

5.2.8.2  National  methods  for  estimation of  b iomass carbon stocks  

Tier 2 and 3 methods use nationally-derived data and more disaggregated approaches and/or 
process models, which allow for more precise estimates of changes in biomass carbon stocks. It is 
good practice to ensure that models are tested against field measurements. Examples of current 
national and sub-national biomass/biomass carbon map products are provided in Appendix C.6.  

Under Tier 2 methods for biomass carbon stocks, country-specific data on ratios of below ground to 
above ground biomass can be used to estimate below ground stock changes. For land converted to a 
new land cover class, Tier 2 methods to calculate annual change in biomass stocks replace Equation 
2.4 with Equation 2.15 (Vol. 4, IPCC 2006), where the changes in carbon stock are calculated as a 
sum of the increase in carbon stock due to biomass growth, changes due to actual conversion 
(difference between biomass stocks before and after conversion), and decrease in carbon stocks due 
to losses.  
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There are no refinements to the IPCC (2006) methods to estimate change in biomass carbon stocks 
(above and below ground) in the 2019 Refinement to the IPCC 2006 Guidelines. Additional generic 
guidance is provided for Tier 2 methods around the use of: i) allometric models for estimating 
biomass, and ii) above-ground biomass density maps constructed from remotely-sensed data to 
estimate biomass. Allometric models can be used with country-specific data to estimate biomass 
carbon stocks at Tier 2 and may also form part of more complex Tier 3 approaches including 
measurement-based inventories and model-based inventories. Biomass density maps are 
constructed by combining remotely sensed data and field observations and have been developed at 
a range of scales including national, continental and global (see Appendix C.7).  

5.2.8.3  National  methods  for  estimation of  debris  carbon stocks  

Under Tier 2 methods for debris carbon stocks, changes in dead organic matter (DOM, dead wood 
and litter) carbon pools (Equation 2.17, Vol 4, IPCC 2006) can be estimated using two methods: i ) 
tracking inputs and outputs (the Gain-Loss Method, Equation 2.18, IPCC 2006);  ii) estimating the 
difference in DOM pools at two points in time (Stock-Difference Method, Equation 2.19; IPCC 2006).  

These estimates require either detailed inventories that include repeated measurements of dead 
wood and litter pools, or models that simulate dead wood and litter dynamics. The same equation is 
used for dead wood and litter pools, but their values are calculated separately. Tier 3 methods based 
on models of the terrestrial carbon budget that include both the production and turnover of living 
biomass will embed, as part of their structure, the dead wood and litter carbon pools.  

For SOC stocks, in most cases it is envisaged for Tier 2 methods that estimates of changes in carbon 
stocks above and below ground will be made using a combination of remotely sensed and ground-
based data. Remotely sensed and auxiliary ground-based data in combination are likely to be useful 
for stratification in order to increase sampling efficiency. If sufficient national inventory data are 
available over space and time and at sufficient spatial resolution, repeated inventories can be used 
to directly estimate stock changes associated with activities. It will often be best to use national 
inventory data in combination with remotely sensed data. Data from national inventories are also a 
potentially valuable source of information for the estimation of biomass using gain-loss methods, 
and for developing modelling approaches (empirical, process-based or other types of advanced 
models) under a Tier 3 method. A model-based inference approach, where carbon stock is inferred 
from models, and change in carbon stock modelled for each land cover change, can also be used.  

5.3 Comments and Limitations 

5.3.1 Limitat ions  of the sub-indicator as a degradat ion metric  

Compared with biomass carbon, changes in SOC stock associated with changes in land use and 
management, or with climate change, must be measured over longer periods. These changes are 
small relative to the very large stocks present in the soil as well as the inherent variability. Thus, 
sensitive measurement techniques and due consideration for the minimum detectable difference 
are required, as well as cost-effective sampling schemes that use comparable soil analytical methods 
(Ravindranath and Ostwald 2008; Heuvelink 2014; Batjes and van Wesemael 2015). A four-year 
reporting frequency proposed for the indicator is likely to be too short to detect SOC stock change 
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where an on-ground monitoring approach is used, and may even be difficult to register change in 
less than 10 years (Smith 2004).  

Although carbon stocks in non-forested ecosystems are typically largest in the soil pool, in forested 
ecosystems and where woody perennial vegetation is present, the largest pool tends to be in the 
biomass except when growing on organic soils (GFOI 2016). Furthermore, in forested ecosystems, 
observed changes in SOC stocks may not always capture degradation. For example, conversion of 
native forest to pasture may not result in a change in SOC stock (Guo and Gifford 2002), but it will 
substantially reduce biomass carbon stock. Thus, once operational, the use of total carbon stocks as 
the sub-indicator will provide a more comprehensive assessment of degradation, particularly in 
cases of conversion of forested systems to other land uses.  

5.3.2 Applicabi l ity across land cover types 

5.3.2.1  Default methods  

In some cases, it may be difficult to report SOC stock changes using IPCC defaults because these do 
not capture all land cover changes. An alternative default method, perhaps by including IPCC 
defaults for stratification by climate, ecological, disturbance or management, and national proxy 
data, may be used as long as this stratification can be aggregated to the IPCC classes to allow global 
reporting.  

In terms of operationalising for reporting, assuming land cover can be a stand-in for land use, then 
the change factors based on transitions from one land use to another (FLU) can be populated from 
the indicator for LC and its annual transitions. However, there are currently no known global data at 
a sufficient resolution to obtain information for the management (FMG) and input (FI) change  factors. 
These factors can be more reasonably applied at national and sub-national levels.  

5.3.2.2  National  methods  

For countries already reporting to REDD+, some consistency with REDD+ methods in defining forest 
sub-classes is recommended. For example, a logical extension for countries already reporting to 
REDD+ would be to stratify forest land into sub-classes of primary forest, modified natural forest and 
planted forest, as per the minimum number of national sub-categories identified in GFOI (2016) and 
in FAO (2015). 
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5.3.3 Data l imitat ions  

5.3.3.1  L imitations of soi l  organic  carbon datasets  

Soils are the largest terrestrial store of organic carbon, yet large uncertainty remains in estimates of 
SOC stocks at global, continental, regional and local scales. Default values for reference SOC stocks 
and stock change factors provided in IPCC (2019) improve upon those in IPCC (2006) and reflect the 
most recent review of changes in SOC with conversion of native soils. However, limitations include 
the lack of relative change factors for some climates, as well as a paucity of change factors for 
specific management scenarios. It should be noted that, as for the IPCC defaults, the predictions of 
baseline SOC stocks derived from soil maps at a specified location will typically have large 
uncertainties. In general, the use of datasets with the highest (finest) spatial resolution and accuracy 
is recommended.  

For baseline maps, there are several limitations with currently available maps used to construct SOC 
stocks. These relate primarily to predictions being based on soil legacy data and include:  

 A general paucity of data on bulk density and gravel content. Misuse of these data in 
calculation of SOC stocks can lead to systematic overestimation (Poeplau et al. 2017). 

 Data for SOC (%), bulk density, gravel content and soil depth are typically collected using 
inconsistent measurement methods. 

 Soil data are often collected over a long time period with subsequent predictions not made 
for a specific year but for a span of time (but assumed so in the absence of other, more 
suitable global data). 

 Soil data are collected for various purposes, so there will likely be sampling bias (e.g., an 
over-representation of agricultural areas is common; in such cases bias can be heuristically 
minimised by weighting; however, an underrepresentation of natural grasslands and forests 
poses larger methodological issues). 

 Incomplete coverage of various ‘global’ legacy data collections (e.g., WoSIS, Batjes et al. 
2020), with much existing data kept in national and institutional repositories  (Arrouays et al. 
2017).   

Further, many global products (e.g. Harmonized World Soil Database85) map SOC content and bulk 
density but not SOC stocks which requires multiplying the maps and averaging the depths to derive 
the 0-30 cm SOC stocks. This is generally easily overcome: For example, GSOC map86 is global but 
consists of national maps, many of which would be better alternatives to the IPCC defaults. As 
concluded by the ITPS in their Technical Summary of the Status of the World’s Soil Resources (Action 
4, page ix)87, regional assessments frequently base their evaluations on studies from the 1990s that 
were, in turn, based on observations made in the 1980s or earlier. Thus, there is a strong need to 
improve our knowledge about the current state and trends in the condition of soil, and initial 
emphasis should be on improving observation systems, including for SOC. Recognising the limited 
availability of datasets on SOC stock at national and regional levels, the uncertainties associated with 

 
85 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ 
86 http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-soil-organic-carbon-map-gsocmap/en/ 
87 http://www.fao.org/3/a-i5126e.pdf 
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the suitability of existing data for monitoring SOC stock changes, and insufficient quantitative 
evidence linking SOC stock changes to the various land and soil degradation drivers and processes, 
the FAO’s GSP is now making a concerted effort to address these challenges and build national 
capacities to more accurately estimate SOC stocks within the context of SDG Indicator 15.3.1 (FAO & 
ITPS 2015).  

The global spatial products described above for estimating SOC reference stocks are currently not 
dynamic. Even if planned improvements in the accuracy of predictions are made, the global grid 
(even time-stamped releases over several decades) would not necessarily be the most effective way 
of detecting SOC stock change. Other strategies are more sensitive, such as a well-designed 
monitoring network (e.g. the European Union’s Land Use/Cover Area Frame Statistical Survey, 
LUCAS88), and can provide policy-relevant information faster (e.g., through the use of expert 
elicitation). Ideally, country-specific baseline maps would be used to design future monitoring 
programs for evaluating the impacts of land cover and land management on SOC stock for Tier 3 
methods (See Appendix C.2). 

Existing agricultural field trials provide one immediately available resource for the study of 
management impacts on soil carbon sequestration. These data sets have both informed soil carbon 
modelling (Parton et al. 1987; Skjemstad et al. 2004) and formed the basis for the stock change 
factors used in current IPCC inventory guidelines (Ogle et al. 2005; IPCC 2006; 2019). However, there 
is a real need for a large technical program to more comprehensively establish relationships between 
land management and SOC stocks and stock change for a wider range of land uses and managements, 
across all regions.  

5.3.4 Uncerta inty  

The main consideration in the selection of the estimation method by a country is the current and 
likely future availability of data. The choice of method will have implications for the level of 
uncertainty in the estimate of changes in the SOC metric. The default method draws on area data 
(i.e., activity data) generated from the assessment of land cover change in combination with 
reference and emission factors obtained from the IPCC default tables corresponding to broad 
continental land cover types and management regimes. As such, derived estimates provide limited 
resolution of how carbon stocks vary sub-nationally and have large uncertainty. 

The inclusion of country-specific data (and/or use of higher order methods) is a more rigorous 
approach to generating estimates of changes in SOC stocks and requires higher levels of effort and 
resources. Reducing uncertainty in estimates requires improvements in the stratifications of 
environmental variables linked to emission factors, and/or increasing the number of soil samples 
used for the estimation. The capacity to do this will require improvements in analytical capabilities 
and analysis. Requirements include ground measurements, such as national inventories repeated 
through time, and intensive monitoring sites. Existing data from national inventories, or from similar 
bioclimatic regions, can provide information for default estimation methods, and for developing 
modelling approaches. Detailed information (at fine scale) generated at intensive monitoring sites 
can help address the difficulty of estimating stocks and stock changes by supporting the 

 
88 http://esdac.jrc.ec.europa.eu/projects/lucas 
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development of model parameters, including emissions and removals factors. Derived estimates 
using such higher order methods provide information at sub-national scale and ought to have lower 
uncertainty. 

Both land cover areas and carbon stocks have uncertainties which need to be combined when 
estimating changes in carbon stocks. Similarly, uncertainties for estimates of non-CO2 greenhouse 
gas emissions are calculated by combining component emission/removal factors and activity data 
uncertainties. Each of the IPCC default values have an error estimate provided, as should any 
nationally derived data. There will also be different uncertainties associated with estimates for 
different carbon pools, and where multiple pools are considered and combined (i.e. if biomass 
carbon was included), this would need to be considered in an overall estimate of uncertainty. 
Approaches for determining uncertainty for each C stock estimate for each time period include error 
propagation and uncertainty analysis, such as the Monte Carlo simulation (see IPCC 2003 guidance).  
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6 Recalculating the time series 
Throughout the reporting periods it will occasionally be necessary to adopt different, new and/or 
improved data sources to calculate one or more of the sub-indicators.  Recalculation may be 
necessary to incorporate the improved quality and availability of datasets, changes in the calculation 
methods, or to correct errors in a previous version of the data.  It may also be necessary to fill data 
gaps by recalculating subsets of the existing time series from an alternative data source.  Countries 
are strongly urged to transition to using the improved datasets for this analysis as they become 
available, consistent with the guidance provided by the GEO LDN assessment of data quality 
standards89.  These datasets will evolve over time as new sensors are launched and their data is 
calibrated and provided for use.   

Given the evolution of the sub-indicator calculation methods presented in this revised version of the 
GPG, it is recommended that previously submitted estimates of Indicator 15.3.1 should be 
recalculated and included in the next reporting period.   

The methods used to create the default land cover and SOC datasets (and land productivity to a 
lesser degree) provided to countries for calculating Indicator 15.3.1 are complex, and it is unlikely 
that many countries will be able to replicate those products from the available archives of EO image 
data.  The length of the historical archive of these products, and their likelihood of provision at no 
cost in the future is also dependent on the interests of third-party organisations.  Filling gaps in 
these datasets, such as to extend a new time series dataset to the beginning of the baseline period, 
will therefore probably involve compilation and harmonization of products created from different 
EO sources or using different methods.   

Improved algorithms using the previous data sources may enable a relatively straightforward back 
calculation of the sub-indicators, in which case values in the baseline period may be recalculated 
with a high level of confidence in the revised values.  The emergence of a new data source makes 
this more difficult, and confidence in recalculated values may be lower or difficult to calculate.   

Improvements in the spatial resolution, spectral composition and capture frequency between data 
sources may influence the extent of degradation calculated for each of the sub-indicators.  Smaller 
pixels can better represent complex spatial patterns, increased spectral resolution can enable land 
features to be more accurately discern from one another, and increased observation frequency may 
improve the representation of dynamic processes.  While it is unlikely that a new dataset of a similar 
type will produce very significantly different or inconsistent results compared to a previous one, it is 
important to assess the impact of these differences across the time series of measurements to 
incorporate any improvements in accuracy in the historical and current degradation assessments.   

The use of a new dataset may also indicate a different extent of degradation during the baseline 
period than was indicated using the previous dataset.  As the aim of LDN is to stabilise or reduce the 
extent of degraded land in future compared to the baseline period, changes to the apparent extent 

 
89 http://earthobservations.org/documents/ldn/20200703_GEOLDN_TechnicalNote_FINAL_SINGLE.pdf 
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of degraded land calculated using a newer dataset should be adopted as the new baseline degraded 
extent.   

6.1 Recalculation Methods 

6.1.1 Objective and methodology 

The objective of recalculating the time series is to estimate any changes to the baseline degraded 
extent, based on a reasonable approximation of how the new dataset would have represented the 
baseline period had it been available at that time.   

Good practice for incorporating new or improved datasets is to: 

1. Adopt the new dataset as the standard data source; 
2. Model the relationship between annual estimates from the previous and new datasets in the 

period of data overlap – the difference is likely to be a constant, proportion or a trend; 
3. Apply the model to adjust annual estimates from the previous dataset to match the new 

dataset; 
4. Report the difference in values and the extent of degradation between the previous and 

new annual estimates; 
5. Document the reason for the re-calculation including any notable inconsistencies or errors in 

the assessment of the difference between the previous and new datasets. 

Recalculation of the degraded extent using the new datasets should occur at the sub-indicator level, 
as each sub-indicator may have a unique pattern of response between the previous and new 
datasets.  Integrating the sub-indicators should provide a more accurate foundation for comparison 
in the 1OAO process than simply adjusting measurements at the Indicator level.  

Volume 1, Chapter 5 in IPCC (IPCC 2006) provides guidance for combining and comparing 
quantitative datasets in a range of likely data situations (summarised in Table 6-1), noting that the 
choice of technique should involve an expert assessment of the variability of the sub-indicator 
trends, the availability of data for overlapping periods, the suitability and availability of alternative 
data sets, and the number of years of missing data.  Much of this chapter is adapted from the IPCC 
document for relevance to Indicator 15.3.1 and LDN.   
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Table 6-1. Methods for combining and comparing all or parts of time series datasets (modified from IPCC, 2006, 2019) 

Approach Applicability Comments 

Overlap Only where measurements using both 
the previous and the new method are 
available for at least one coincident 
year, preferably more. 

Most reliable when the difference between two 
or more sets of annual estimates can be 
compared for several year(s). 

If the trends observed using the previously 
used and new methods are inconsistent, this 
approach is not good practice. 

Surrogate data Sub-indicators are strongly correlated 
with other well-known and more readily 
available indicative data. 

Multiple indicative data sets (singly or in 
combination) should be tested in order to 
determine the most strongly correlated. 

Should not be done for long periods. 

Interpolation Data needed for recalculation using the 
new method are available for 
intermittent years during the time 
series. 

Estimates can be linearly interpolated for the 
periods when the new method cannot be 
applied. 

The method is not applicable in the case of 
large annual fluctuations. 

Trend 
extrapolation 

Data for the new method are not 
collected annually and are not available 
at the beginning or the end of the time 
series. 

Most reliable if the trend over time is constant. 

Should not be used if the trend is changing (in 
this case, the surrogate method may be more 
appropriate). 

Should not be done for long periods. 

Non-Linear 
Trend Analysis 
(Interpolation/ 
Extrapolation) 

In cases where time series consistency 
is best represented by multiplicative 
(exponential) rather than additive 
(linear) relationships. 

Most reliable for trend analysis of model 
outputs. 

Applicable in the case of large annual 
fluctuations with observed high standard 
deviations (see Box 3.0a, Chapter 3, Volume 1 
of the 2019 Refinement for guidance on 
standard deviation values). 

Other 
techniques 

The standard alternatives are not valid 
when technical conditions are changing 
throughout the time series (e.g., due to 
the introduction of mitigation 
technology). 

Document customised approaches thoroughly. 

Compare results with standard techniques. 

 

6 .1.2 Recalculating datasets  with overlapping t ime periods  

The most likely scenario under which the time series will be recalculated for reporting on Indicator 
15.3.1 is to incorporate the use of an improved dataset into future calculations.  In the case where a 
new and improved data source becomes available, it may not have a long enough archive to provide 
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observations over the full baseline and reporting period.  However, there may be a period of time 
during which measured data (such as observations of productivity) are available from both datasets.  
Under these circumstances it may be possible to calculate the relationship between the previous 
and new datasets to simulate the measurements that the new dataset would have made over the 
previous time period if it had been available.   

The overlap method works best where the difference in annual estimates between the previous and 
new datasets is consistent, and where the previous and new datasets overlap by several years, 
which enables a more accurate estimation of the difference between their estimates.  The overlap 
method is unsuitable where the period of overlap is very short or where the difference between 
datasets varies substantially between years.  If there is no overlap between the previous and new 
datasets, or if the difference between annual estimates of the new and previous datasets is not 
constant, it may be necessary to model the difference between datasets using more sophisticated 
methods and additional data sources.   

A simulated dataset is constructed by examining the relationship between the previous and new 
datasets in the period of overlap and applying that transformation to the previous dataset.  The 
estimates from the previous dataset should be adjusted to match those of the new dataset either by 
adding a constant (where the difference between annual estimates is constant) or by an amount 
equal to the average difference between annual estimates where variation in the difference 
between years is small.  

The suitability of the overlap method can be tested using the guidance provided in Box 5.1B of the 
IPCC Refinement report (IPCC 2019).  Key steps in this process include: 

1. For each year, calculate the ratio between the estimates calculated from the previous and 
new datasets (as shown in the ‘Change in degraded extent’ column in Table 6-2). 

2. Calculate the mean and standard deviation of the differences. If the standard deviation is 
large relative to the mean then the overlap approach may not be appropriate. At least three 
overlapping years of data will be required to complete this step.  

3. For a linear approximation of the missing data, multiply the previous data by the ratio 
(calculated from step 1, above) to estimate the values that would have been calculated had 
the new dataset been available during the previous time period.  

It is good statistical practice to calculate an average annual difference or constant between datasets 
over no fewer than three years.  If there are fewer than three years of data available before the 
current reporting period, then estimates from the previous dataset should be used in the report, 
noting that a new dataset is available and will be used in the next report.  

Additional guidance on the methods for calculating new estimates is provided in Box 5.2A (linear 
interpolation) and Box 5.2B (non-linear interpolation) of the IPCC Refinement report (IPCC 2019).   

6 .1.3 Report ing the recalculated est imates  

Differences in the extent of degradation shown between the previous and new datasets in the 
baseline and reporting periods should be reported for each sub-indicator and the Indicator using 
format shown in Table 6-2.  
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New degradation maps should be produced for the entire duration of the new dataset, or for the 
entire duration of the previous data (between 1 Jan 2000 to the present date) when there is a 
change in method only.  The recalculation should be conducted at the sub-indicator level and 
integrated using the 1OAO process to calculate the Indicator.   

For the Land Productivity sub-indicator in particular, it will be necessary to calculate annual 
estimates in order to estimate the change in degraded extent in each reporting period.  These 
annual estimates may provide a richer data series on which to model the relationship between 
degradation estimates from the previous and new datasets.  The relationship between annual 
productivity estimates can be shown in the report, using Table 6-2 as a template but with the 
column heading names changed to the years of overlapping data.   

Table 6-2.  Template for reporting change in degraded area between previous and new iterations of the calculation 

Sub-
indicator/ 
Indicator  Baseline (t0) Reporting Period (tn) 

Land Cover Previous Data (ha)   

New Data (ha)   

Difference (ha)   

Change in degraded 
extent (%) 

  

Land 
Productivity 

Previous Data (ha)   

New Data (ha)   

Difference (ha)   

Change in degraded 
extent (%) 

  

Carbon 
Stocks 

Previous Data (ha)   

New Data (ha)   

Difference (ha)   

Change in degraded 
extent (%) 

  

Indicator 
15.3.1 

Previous Data (ha)   

New Data (ha)   

Difference (ha)   

Change in degraded 
extent (%) 

  

 ‘Previous Data’ is the extent of degradation in ha shown in that year for the previous dataset 
 ‘New Data’ is the extent of degradation in ha shown in that year for the new dataset 
 ‘Difference’ is the signed difference in the extent of degradation shown between the 

previous and new datasets, calculated as shown in Equation 6-1:  

 
Equation 6-1 
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 ‘Change in degraded extent’ is the signed difference in the proportion of land that is 
degraded in the previous data and the proportion of land that is degraded in the new data, 
as shown in Equation 6-2: 

 
Equation 6-2 

Table 6.3 shows a worked example of a completed section of Table 6-2.  Note that this example 
shows information for the Land Cover sub-indicator only, and that a completed Table 6-2 should also 
include data for the Land Productivity and SOC sub-indicators, and Indicator 15.3.1. 

Table 6-3.  Worked example of data to be included in the Land Cover section of a completed  Table 6-2.   

Sub-
indicator/ 
Indicator  

Baseline 
2000-2015  

Reporting 
Period  
2016-2018  

Land Cover Previous Data (ha) e.g., ESA CCI 1,000 500 
New Data (ha), e.g., Copernicus 1,100 550 
Difference (ha) 100 50 
Change in degraded extent (%) +10% +10% 

 

Any apparent systematic differences in the extent of degradation shown between the previous and 
new data, such as might occur from changes in the land cover class definitions, or the spectral, 
spatial or temporal resolution of the datasets, can be described in the report.   

Once the differences between the datasets have been documented in this way the new dataset then 
becomes the dataset used for all future calculations until another improved dataset becomes 
available.   
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7 Assessing the magnitude of degradation 
SDG Indicator 15.3.1 reports the extent of land degradation per country as a binary variable - 
‘degraded’ or ‘not degraded’.  LDN is achieved when the area of ‘losses’ to degradation is balanced 
by ‘gains’ in the area that improves from a degraded state, within each land type, across land types, 
at national scale.  By failing to consider the magnitude of degradation, there is a risk that losses 
involving very severe degradation may be considered to be counteracted by a small gain in land-
based natural capital on an equal area. Further guidance on how to interpret degradation severity 
information to address LDN is provided in Chapter 7 of the Scientific Conceptual Framework for LDN 
(Orr et al. 2017). 

The Scientific Conceptual Framework for LDN describes the magnitude of degradation as the total 
amount of gain or loss in each of the sub-indicators over a given area and time.  Calculating the 
magnitude of degradation is possible using the methods and datasets described in this GPG by 
measuring change in the extent of a given land cover type, the total mass of SOC or plant biomass 
between two time periods.   

Each of the sub-indicators has a particular confidence level of mapping and measurement accuracy.  
The level of confidence is related to the sub-indicator’s absolute spatial resolution, the spatial 
resolution of the map relative to the typical variability of the object of interest in the environment, 
the measurement accuracy that can be achieved with reasonable effort, and the strength of the 
quantitative relationship between the sub-indicator model or surrogate and the physical parameter 
of interest (e.g. the relationship between NDVI as a surrogate for productivity, and weight of plant 
biomass in the field).  The default datasets recommended for each of the sub-indicators are amongst 
the most accurate global products for assessing each of their respective targets, though a higher 
level of accuracy would normally be achieved through the production and calibration of a regional, 
national or local dataset (calibration methods are provided for each sub-indicator in the relevant 
Chapter above).  Calibrating localized maps in sufficient detail and rigor is a highly specialized and 
expensive task however, and may not be realistically achievable by some countries. 

Calculation of the extent of degradation should not consider any alternative or more detailed 
assessments of degradation magnitude than is described below.  In order to prioritize plans of action 
to prevent or remediate degradation, it may be useful to interrogate the magnitude of degradation 
in addition to its extent.  Consistent with the precautionary principle, it is preferable to potentially 
overestimate the magnitude of degradation than to erroneously underestimate it.  If it is required 
report degradation magnitude at the Indicator level, then, consistent with the 1OAO process, 
regions should be labelled with the greatest magnitude of degradation of the sub-indicators.   

The following section provides guidance on reporting the magnitude of change of each of the sub-
indicators in both absolute and relative terms. 
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7.1 Land cover and land cover change 

For a given land unit and land cover type, the magnitude of degradation is equal to the area (ha) that 
has exhibited a degrading transition from one land cover type to another in the baseline or reporting 
period.   

Land cover degradation considers the qualitative aspects of transitions from one land cover class to 
another.  Land cover, as a typically categorical description of a complex of biophysical features, can 
be difficult to rank in terms of change severity.  Potential approaches to the quantitative 
interpretation of the magnitude of land cover change might consider land cover types in terms of 
factors such as carbon storage, habitat provision, national development goals or a range of other 
criteria.  In the context of Indicator 15.3.1 and LDN, which use a limited range of data sources by 
default, it is also important that the Land Cover sub-indicator is as independent of the NPP and SOC 
stocks sub-indicators as possible.  

The SEEA land accounts methodology90 provides guidance on assessing the monetary value of 
changes in land cover.  This may be useful for providing an integrated summary of the ‘positive’ and 
‘negative’ changes in land cover in terms that are correlated with, but independent of the quantities 
of land productivity and SOC.   

7.2 Land productivity 

For a given land unit and land cover type, the magnitude of land productivity degradation is equal to 
the reduction in NPP (kg or tonnes) per unit area over time.   

For the purpose of Indicator 15.3.1, relative change in a vegetation index of plant productivity (such 
as NDVI or EVI) is used (see Section 4.2.4).  Pixel values in most vegetation indices represent 
differences in green plant biomass, cover and growth vigour, and can be used to indicate differences 
in the magnitude of productivity degradation within the degraded area.  A map showing variations in 
vegetation index values within the extent of degradation is a simple way to identify the areas of 
most severe degradation in land productivity at the pixel scale. For most vegetation indices, low 
positive or increasingly negative index values indicate more severe degradation.   

A range of possible functions may be used to aggregate the pixel-scale vegetation index values to 
reporting units.  Vegetation indices often represent productivity in a range of positive and negative 
values.  Using the NDVI as an example, areas of highest productivity and plant cover have a positive 
value closer to 1, and areas of low productivity or bare areas have a lower value, ranging to -1 for 
the most barren landscapes.  Areas of the severest degradation may therefore be represented by 
negative vegetation index values, complicating the process of calculating a difference in index values 
over time using statistical averages such as mean NDVI value.  Allocating a percentile value, such as 
the 50th percentile or median NDVI to a reporting region may provide a reasonable basis for 
comparison.   

It may also be useful to interrogate the metrics used to calculate the land productivity sub-indicator 
to interpret degradation magnitude.  The land productivity sub-indicator interprets degradation 

 
90 https://seea.un.org/content/land-accounts  
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from the vegetation index data using three metrics: Trend, State and Performance.  This 
combination of metrics is required to identify degradation in areas where the condition is declining 
over time (Trend and State), or areas where productivity levels are stable or increasing over time but 
are low compared to other land units within the LCEU (Performance).   

7 .2.1 The magnitude of product iv ity Trend 

The assessment of productivity Trend (see Section 4.2.4.2) includes calculation of the positive or 
negative trend slope and the statistical significance of that slope.  Larger slopes (and more significant 
Mann-Kendall Z scores) indicate a larger magnitude of change in productivity over time, and may be 
interpreted in terms of level of change in land degradation in a given area.  Trend may not fully 
encapsulate the magnitude of degradation at any point in time, such as where productivity may be 
increasing over time but remain at a relatively low level, or where productivity may be decreasing 
but remain at a high level.   

Section 4.2.4.2.1 recommends interpreting the significance of the Trend slope Z scores in terms of 
five levels (Degrading, Potentially Degrading, No significant change, Potentially Improving and 
Improving), which may be interpreted as also indicating the magnitude of Trend change.  Teich et al.  
(2019) present an alternative scale in which changes are expressed as percentages, based on a 
comparison of the initial and final values during the reporting period.  

Table 7-1. Trend intensity groupings recommended by Teich et al. (2019) 

Description Trend Intensity 

Strong Negative Trend Decrease of at least 50% 

Moderate Negative Trend Decrease between 25% and 50% 

Light Negative Trend Decrease of less than 25% 

No Trend No significant slope 

Light Positive Trend Increase of up to 25% 

Moderate Positive Trend Increase between 25% and 50% 

Strong Positive Trend Increase of at least 50% 

 

7 .2.2 The magnitude of product iv ity State  

As for Trend, productivity State also determines the significance of change using Z-scores and 
presents the magnitude of change in five levels (Section 4.2.4.3.1). Productivity State identifies 
degradation based on the change in condition over time and, as with trend, this may not fully 
encapsulate the magnitude of degradation.  

7.2.3 The magnitude of product iv ity Performance 

Productivity Performance compares the level of productivity within each land unit to the 
productivity of other pixels within its LCEU.  Degraded productivity Performance may indicate areas 
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where unique or point-source pressures are degrading plant productivity locally. Performance is also 
the key metric for identifying the level of productivity, rather than its change over time, and it can be 
used to identify areas that have remained at a low productivity level for longer periods of time.   

7.3 Carbon Stocks 

For a given land unit, the magnitude of degradation in SOC is the sum of the estimated reduction in 
C stock over all pixels where the estimated reduction in C stock is >10%.  A nominal reduction in SOC 
of 10% or more between the baseline and reporting period reflects the accuracy with which changes 
in SOC stocks over time can be reasonably assessed using the currently available default datasets 
and methods, however it is recommended that at higher tiers these thresholds be refined based on 
available country-specific information.   

Within the extent of degradation, locations with a larger reduction in SOC between the baseline and 
reporting period may indicate a greater magnitude of degradation in SOC stocks.   

7.4 A note on measurement thresholds and ecological thresholds 

An alternative to measuring absolute change in physical quantities of each sub-indicator is to 
examine their relative magnitude of degradation.  The sub indicators of Indicator 15.3.1 present the 
sub-indicator values per pixel.  Methods to include only areas of degradation that exceed a severity 
threshold level are incorporated into each of the sub-indicator degradation analyses used to 
determine the degraded/not-degraded binary state, and so each sub-indicator considers change 
magnitude in its assessment of degradation.   

The definition of land degradation adopted by the UNCCD includes identifying a land unit as 
degraded solely on the basis of that land unit having exhibited a reduction in land productivity: the 
level of productivity from or to which the reduction occurs is not specified in the definition.  
However there are a range of opinions in the literature on how to define, identify and measure land 
degradation (see Prince 2019 for example).  The threshold model of vegetation dynamics suggests 
that substantial alterations to disturbance regime, structure or functioning can cause ecosystems to 
transition from one ‘stable state’ of functioning to another (Briske et al. 2005). Crossing these 
thresholds can modify site characteristics to the extent that it may not be possible to recover the 
original ecosystem characteristics (Sasaki et al. 2015).  

SDG Indicator 15.3.1 measures a range of parameters, mainly using EO data, to identify areas where 
land degradation is likely to have occurred in the past, and in some cases to identify areas at risk of 
degradation in the future.  It is acknowledged that Indicator 15.3.1 does not capture all facets of 
degradation, and that there are sources of error in the datasets and methods used.  However, 
Indicator 15.3.1 is designed to be as indicative, consistent and relevant as possible for the majority 
of terrestrial ecosystems, as required in SDG monitoring.  For these reasons, the monitoring 
approach presented in this GPG includes provisions for assessing anomalies (false positives, false 
negatives, see Section 2.2.2), and the LDN Framework (Orr et al. 2017) emphasises the importance 
of reviewing land degradation assessments, and their impacts on ecosystem services and livelihoods, 
through stakeholder review at national to local levels.  

While identifying degradation thresholds in ecosystem functioning is a considerable challenge 
(Sasaki et al. 2008), and observational measurements such as are used to calculate Indicator 15.3.1 
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can tell only part of the story of land degradation, it may be possible to achieve some additional 
insights into ecosystem functioning using the sub-indicators of Indicator 15.3.1, by comparing the 
changes in productivity with changes in land cover.  Land units in which productivity levels have 
declined significantly or have remained low for a long period of time, and which exhibit a 
subsequent degrading land cover transition, may warrant further investigation.  It should not be 
presumed that areas undergoing these changes have necessarily exceeded a threshold, and this 
assessment should always be conducted in the context of local knowledge.   

7.5 From regional to local information: Brightspots and Hotspots 
Within any land unit, reporting unit or LCEU there will be variations in the condition of each of the 
sub-indicators, which produces variations in the magnitude of degradation.  The quantitative 
assessments and corresponding mapping at the national level, as required by the Indicator, will help 
countries to set policy and planning priorities in regions containing a complex of land cover types, 
productivity levels, SOC stocks, and range of degradation severity magnitudes.  

While aggregation to larger regions can simplify the process of comparison between areas with 
similar land conditions, it is often impractical to implement rehabilitation measures over very large 
areas.  Pixel scale maps indicating the distribution of sub-indicator values, including the magnitude 
of degradation, should be used to identify the specific location of areas of most significant 
degradation within the disaggregation zones, which may enable the allocation of resources to 
address existing severe degradation.   

The UNCCD define areas experiencing the most evident and dramatic change’91, as: 

 ‘Hotspots’, which are highly vulnerable to degradation in the absence of urgent remediation 
activities 

 ‘Brightspots’, which do not exhibit any signs of degradation, or which have been remediated 
from a degraded state by implementing appropriate remediation activities, or through land 
planning processes to prevent degradation (Singh and Ajai, 2019). 

Identifying Hotspots may enable the development of plans of action to redress degradation in those 
areas, including through the conservation, rehabilitation, and restoration and sustainable 
management of land resources.  The location of Hotspots may be known, in which case data from 
each of the sub-indicators can be used to identify potential drivers of degradation that may be most 
important to address locally.  New Hotspots may also be identified from the sub-indicator data using 
pixels in which conditions are trending towards, or are close to being degraded, but which have not 
yet experienced sufficient change to be identified as degraded for the purposes of Indicator 15.3.1.  
In terms of Land Productivity, for instance, Hotspots might be identified as areas with a negative but 
non-significant Trend, a reduction in productivity State of 1 decile, and/or a Performance value 
between the 50th and 60th percentile.   

The location of Brightspots may also be known, but new Brightspots might also be located by 
identifying any areas which have improved from Degraded to Not-Degraded during the baseline or 

 
91 https://knowledge.unccd.int/lib-unccd-terminology-and-glossary/lib-unccd-terminology-and-glossary-112 
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reporting period.  It may be useful to examine Brightspots as demonstrations of combinations of 
natural conditions that may prevent degradation, or of the effectiveness of particular remediation or 
planning actions.  In addition, the identification of Brightspots can aid planners and managers 
seeking to optimize the impact of integrated land use planning and landscape management across 
much larger areas by systematically capitalizing on the positive influence of more localized success 
stories.  The primary database recommended by the UNCCD for reporting SLM best practices is the 
World Overview of Conservation Approaches and Technologies (WOCAT) global Sustainable Land 
Management database92. 

 

 
92 https://www.wocat.net/en/global-slm-database  
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Appendix A. Land Cover 

A.1 Existing Land Cover Products 

Land cover products developed and validated by the relevant national authorities will generally 
provide the most relevant data for the purpose of monitoring key land degradation processes in the 
context of the SDG 15.3.1 indicator. However, in some instances, the development of a national land 
cover product may not be possible. In such cases, various regional or global products provide a 
viable alternative. As stated in the land cover and land cover change sub-indicator chapter, the 
UNCCD has endorsed the use of the ESA CCI-LC as the global default land cover product, for use 
where there is no capacity to produce a national product or where more relevant data is not 
available. 

A.1.1 National Land Cover Products 
Many countries produce their own land cover mapping products that service both national and 
international reporting requirements. A number of these have been reviewed by Diogo and Koomen 
(2015) and are listed in Table A-1. which includes some recent updates. These data are considered to 
be preferable to global and regional products if they have been designed to include specific land 
cover types that better capture nationally significant land degradation processes. However, national 
land cover mapping products vary greatly in terms of the underlying data used, their spatial and 
temporal resolution, the classification algorithms employed, and the level of validation applied. In 
order for national land cover mapping approaches to best serve the need for monitoring SDG 
indicator 15.3.1, care should be taken to incorporate good practice in terms of legend definition, 
temporal range and frequency, spatial coverage and resolution, and accuracy, as described in the 
flow chart shown in Figure 3-4. 

It may be useful to consider regional land cover products if the development of national land cover 
products are beyond the resources of an individual country. Two important regional datasets are 
discussed below and summarized in Table A-2. 

 CORINE Land Cover (CLC): The CLC product includes coverage of the European Union 
member states and other European countries. The product is based primarily on the manual 
interpretation of satellite imagery including Landsat, SPOT and Sentinel satellite program 
imagery. National land cover maps are assembled into a seamless European map, resulting 
in a complete and consistent dataset across Europe. The datasets are available in vector 
format with minimum spatial unit of 25ha. There are 44 classes defined and organised in 
three hierarchical levels, combining both land cover and land use concepts. These land cover 
maps are available for 1990, 2000, 2006, 2012 and 2018. 
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 CLC accounting layers: The CLC accounting layers cover 39 European countries: the 27 
European Union member states, the UK and other European countries. The CLC products are 
based on visual or semi-automated interpretation of high-resolution multispectral satellite 
imagery by the national teams of the participating countries. National land cover maps are 
assembled into a seamless European CLC map, resulting in a complete and consistent 
dataset across Europe. The CLC accounting layers are derived from the CLC layers providing a 
statistically solid basis for time series analysis of land cover trends. There are 44 classes 
defined and organised in three hierarchical levels, combining both land cover and land use 
concepts. The accounting layers are available for 2000, 2006, 2012 and 2018. 

 North American Land Change Monitoring System (NALCMS): The NALCMS is a 30m spatial 
resolution land cover product that extends across North America, and is based on MODIS, 
Landsat-7 and RapidEye satellite imagery. The classification legend includes 19 classes in 
three hierarchical levels, defined using the FAO’s LCCS system. There are currently three 
time steps available for 2005, 2010 and 2015. 
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Table A-1. Summary of existing national land cover data available, as reviewed by Diogo and Koomen (2015). 

Product  Measurement method Reported accuracy Geographical coverage Spatial resolution  Time periods available Thematic resolution  
PNECO      Based on MODIS TERRA 

and LANDSAT TM satellite 
imagery   

None      Argentina            2006-2007      Land cover (FAO-LCCS)  

National Dynamic Land 
Cover     

Based on MODIS EVI 
composites     

None      Australia       250m       Every two years since 2001 Land cover (FAO-LCCS)  

 ALUM        AVHRR imagery, land use 
information and simulation 
of agricultural crops 
allocation  

None      Australia                  1992-1993, 1993-1994, 
1996-1997, 1998-1999, 
2000-2001, 2001-2002, 
2005-2006, 2010-2011, 
2015-2016 

Land use (ALUMC) 

Mapeamento Sitemático 
do Uso da Terra  

Based on Landsat ETM+ 
satellite imagery 

None      Brazil (mosaics, incomplete)     2003 and 2007, but not for 
all mosaics  

Land use (inspired in 
CORINE)  

Land Cover of Canada   Based on AVHRR satellite 
imagery  

None      Canada (merged with 
Vegetation Map of Alaska 
dataset) 

1km   1998   Land cover (Alaska Interim)  

Canada Land Cover circa 
2000  

Based on Landsat 5 and 
Landsat 7 satellite imagery 

None      Canada    Not reported.  Based on 
data with 30m resolution 

2000    Land Cover (EOSD) 

Catastro de los Recursos  
Vegetacionales Nativos de 
Chile      

Initially based on 
panchromatic aerial 
photography, currently 
based on SPOT 5 and 
FORMOSAT-2 satellite 
imagery  

None      Chile (mosaics of 15 
regions) 

         1997, 2001, 2007 and 2011      Land cover, land use, 
property rights, forest 
category, forest 
establishment and 
reforestation, biomass, 
carbon, forest fires, 
forestry resource extraction 

China Land Cover   Based on Landsat TM/ETM 
satellite imagery 

None      China      1990, 1995, 2000, 2005, 
2008  

Land cover and land use 
(unknown classification)  

National Land Numerical 
Information  

Based on Landsat, TERRA 
and ALOS satellite imagery 

None      Japan (1km mosaics)   100m (1/10) mesh   1976, 1987, 1991, 1997, 
2006 and 2009  

Land use (classes differ per 
year)  

Uso del Suelo y Vegetacion    1976: aerial photography 
interpretation. 1993, 2000 
and 2007: based on Landsat 
TM satellite imagery 

None      Mexico            1976, 1993, 2000 and 2007     Land cover (IFN2000)     

LUCAS LUM        Based on Landsat and SPOT 
satellite imagery     

2012: 95%  New Zealand        Not reported.  Based on 
data with the following 
resolution: 1990 – 30m 
2008 – 10m 2012 – 10m 

1990, 2008, 2012, 2016        Land cover (FAO-LCCS) 

National Land Use and 
Cover   

    -    South Africa        -    Land use (CSDM)   

Land Categories Map of 
the U.S.S.R.   

Compilation of different 
sources from land cadastre 
inventory 

None      Former U.S.S.R.          1991     Land cover (IIASA-LUC 
Former U.S.S.R.)  

National Land Cover 
Database  

Based on Landsat TM 
satellite imagery  

2001:79% 2006: 78%  United States   30m   1992, 2001, 2006, 2011, 
2013 and 2016  

Land cover (modified 
Anderson LCCS) 
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Table A-2. Summary of existing regional land cover data available, reviewed by Diogo and Koomen (2015) and updated to 
current status. 

Product Measurement 
method 

Reported 
accuracy 

Geographical 
coverage 

Spatial 
resolution  

Time 
periods 
available 

Thematic 
resolution  

CORINE 
Land 
Cover          

Based on 
SPOT, Landsat, 
Sentinel 
satellite 
imagery, 
complemented 
with ancillary 
data available 
at the country 
level   

2000: 
87%          

EU-28, Albania, 
Bosnia and 
Herzegovina, 
Macedonia, 
Iceland, Kosovo 
Liechtenstein, 
Montenegro, 
Norway, Serbia, 
Switzerland, and 
Turkey 

1:100,000 
(vector) 
or 100m 
(raster)   

1990, 
2000, 
2006. 
2012, 
2018 

CORINE Land Cover         

North 
American 
LCMS  

Based on 
MODIS, 
Landsat-7, 
RapidEye 
satellite 
imagery 

Canada 
2005: 
59%-69% 

Canada, Mexico 
and the United 
States 

30m and 
250m  

2005, 
2010 
and 
2015  

Land cover (FAO-
LCCS) 

 

A.1.2 Global Land Cover Products 
A review of land cover data conducted by Diogo and Koomen (2015) included 27 global, regional and 
national land cover datasets. It looked at source data, spatial resolution, time periods available, 
accuracy, geographic extent and the classification system employed. The following conclusions were 
considered relevant to selecting the most appropriate data for identifying land cover change: 

 Land cover data with a reasonable continuity of regular epochs should be preferred as there 
is more impetus and demonstrated capability to continue generating these into the future. 

 Country-specific data benefits from the knowledge of local experts, including the generation 
of legends which are appropriate at the national scale. 

 Higher spatial resolution is generally preferred in order to capture finer scale land cover 
change such as urban expansion and other landscape fragmentation. 

A list of global land cover datasets is shown in Table A-33. Some practical limitations of these 
products are outlined below: 

 CCI-LC: The ESA Climate Change Initiative (CCI) Land Cover dataset provides 22 land cover 
classes defined using the LCML, at 300 m resolution based on 300m MERIS, 1 km Spot 
vegetation, 1 km Proba-V and 1 km AVHRR data. Annual updates of the CCI-LC product are 
currently available from 1992 to 2019. Additional years will be made available as soon as 
they are finalized by ESA. 
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 CGLS-LC100: The Copernicus Global Land Service provides an annual dynamic global Land 
Cover product at 100 m spatial resolution.93 The CGLS-LC100 provides 23 land cover classes 
at three classification levels with class definitions according to the LCCS scheme. The product 
also includes continuous field layers or “fraction maps” that provide proportional estimates 
for vegetation/ground cover for the land cover types. The CGLS-LC100 provides yearly 
change detection and global, regional and national land cover and land cover change 
statistics can be obtained from the interactive viewer.94 The data has been produced yearly 
from 2015 to 2019, with processing based on Proba-V data - and includes per pixel quality 
layers and reliability of change relative to the previous year. Note that Proba-V will soon be 
decommissioned, and fully compatible continuation mapping will be based on Sentinel 1 and 
2 imagery. CGLS includes a global validation program and the overall accuracy of the CGLS-
LC100m V2.0 discrete global land cover map is 80.2% +/-0.7%. 

 GLC-SHARE: The GLC-SHARE is a 1 km resolution global land cover product created by FAO’s 
Land and Water Division in partnership with various partners and institutions (Latham et al. 
2014). The product is derived from a broad set of combined and harmonized products, 
including national, regional and global land cover datasets. For this reason, it is not 
attributed to a specific date, but derived from products produced over a date range (2000-
2014). Thus, it provides a useful baseline from which land cover change might be measured, 
as opposed to being a dynamic product that can be used to determine change itself. 

 FROM-GLC: The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC) dataset is a 30 m resolution global land cover map produced using Landsat Thematic 
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, with source data 
centred around 2006 (Gong et al. 2013). While there is significant value in increasing the 
spatial resolution of land cover mapping, this can have implications for classification 
accuracy (Yu et al. 2013). As with GLC-SHARE, the FROM-GLC product is not regularly 
updated and thus may provide a useful baseline but requires additional product epochs to 
be generated in order to monitor change. 

 GLC-FCS30: The GLC-FCS30 is a 30 m resolution global land cover map which used the same 
30-class legend as the CCI-LC. with a fine classification system produced by combining time-
series of Landsat imagery and high-quality global training data from the GSPECLib (Global 
Spatial Temporal Spectra Library; Liu et al., 2020). Now, the datasets for 2000 and 2015 are 
ready for use, and it would be regularly updated. 

 MODIS Land Cover: The MODIS land cover product is generated using a supervised artificial 
neural network classification and decision tree classifier, exploiting a global database of 
training sites interpreted from high-resolution Landsat TM imagery in association with 
ancillary data (Friedl et al. 2002). The latest collection of the products (Collection 695) 
includes processes to reduce year-to-year variability not associated with land cover change 
due to poor spectral–temporal separability in MODIS data (Friedl et al. 2010). MODIS land 

 
93 https://land.copernicus.eu/global/products/lc 
94 https://lcviewer.vito.be/2015 
95 https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf 
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cover products use the International Geosphere–Biosphere Programme (IGBP) classification 
system96 and are available for every year from 2001 to the present at 500m spatial 
resolution.  

Table A-3. Summary of existing global land cover data products adapted from Diogo & Koomen (2015). 

Product  Measurement 
method 

Reported 
accuracy 

Geographical 
coverage 

Spatial 
resolution  

Time periods 
available 

Thematic 
resolution  

 CCI-LC   Based on AVHRR, 
SPOT, PROBA-V 
and Sentinel-3 
satellite imagery 

74%    Global  
(aggregated 
dataset)  

300m    Every year 
from 1992 to 
2018 

Land cover 
(FAO-LCCS)    

CGLS-LC100 Based on Sentinel 
1 and 2 satellite 
imagery 

80% Global  
(aggregated 
dataset) 

100m Every year 
from 2015 to 
2019 

Land cover 
(FAO-LCCS)    

Global Land Cover 
Characterization 

Based on AVHHR 
satellite imagery 

81%-90% 
(training 
data) 

Global 
(aggregated 
dataset) 

10, 8 and 1km   Only 
available for 
1984 

Land cover 
(IGBP)   

Global Land Cover 
Classification 
(GLCC) 

Based on AVHHR 
satellite imagery 

65%-82%  Global 
(aggregated 
dataset) 

1 km  Only 
available for 
1992-1993 

Land cover 
(IGBP)  

GLC 2000   Based on SPOT 4 
satellite imagery 

66%- 69%   Global and 
regional 
(aggregated 
dataset) 

1 km   Only 
available for 
2000 

Land cover 
(FAO-LCCS) 

MODIS Land Cover     Based on MODIS  
satellite imagery   

2005: 75%     Global (mosaics 
and aggregated 
dataset)  

500m, 0.05 
degree 
(aggregated 
global dataset) 

Every year 
between  
2001-present  

Land cover 
(IGBP)     

SYNMAP    Merging of GLCC,  
GLC 2000 and 
MODIS 2001 

-    Global  
(aggregated 
dataset)  

1km    Only 
available for  
(circa) 2000  

Land cover 
(SIMPLE)    

GlobCover  Based on MERIS 
satellite imagery 

2005: 73% 
2009: 68% 

Global 
(aggregated 
dataset) 

300m  2005 and 
2009  

Land cover 
(FAO-LCCS) 

Global Land Survey Satellite imagery 
collected from 
Landsat sensors   

-     Global (mosaics)   30m     1975, 1990, 
2000, 2005 
(LTCCF and 
LFCC only 
available for 
2000 and 
2005) 

HR satellite 
imagery, tree 
cover, forest 
cover change   

FROM-GLC 30m   Based on Landsat 
TM/ETM+ satellite 
imagery 

64%-66%   Global (mosaics)  30m   Only 
available for 
2006  

Land cover 
(compatible 
with IGBP and 
FAO- LCCS) 

GlobLand30   Based on Landsat 
TM/ETM+ and HJ-
1 satellite imagery 

2010: 79%   Global (mosaics)  30m   2000 and 
2010   

Land cover 
(GlobLand30 
legend)  

GLC-Share    Harmonisation of 
national, regional 
and global 
databases  

80%    Global 
(aggregated 
dataset)   

30 arc-second 
(~1km)   

-    Percentage of 
each land cover 
per grid cell 
and dominant 
land cover 
(SEEA) 

 
96 http://www.igbp.net/  
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New and emerging data and methods such as the CEOS Open Data Cube (Rizvi & Killough, 2018) 
algorithms using these global datasets or products are now becoming available. They specifically 
address the "land cover" sub-indicator by classifying the land type at every pixel (6-class IPCC 
system) and comparing the change in this classification between two time periods. 
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Appendix B Land Productivity 

B.1 Land productivity indices 

A large number of land productivity indices and datasets are available for use by countries, and new 
ones are emerging as datasets and processing methods evolve. Some of these may be more suitable 
for use in certain countries than others. This section describes some of the more commonly used 
alternatives to NDVI.  

Note that, ideally, productivity indices should be calculated from image data that have been 
processed to surface reflectance, which minimises the influence of atmospheric, illumination and 
detector sensitivity variations on pixel values. Image data that are not calibrated to surface 
reflectance are more likely to introduce errors into the land productivity assessment within each 
image by changing the relative brightness of bands in each image, and also over time as the 
magnitude of these sources of error varies between growing seasons. 

B.1.1 Normalised Difference Vegetation Index (NDVI)  
The most widely used and best known index which estimates NPP is the NDVI(NDVI; Tucker 1979) 
which is recommended for use in the WAD method. The NDVI is a normalized ratio of near infra-red 
(NIR) wavelengths centred around 800 nm (Equation B-1) which are typically strongly reflected by 
live green vegetation, and red wavelengths centred around 650 nm which are within the 
photosynthetically active range of the spectrum and typically strongly absorbed by chlorophyll in live 
green vegetation.  The NDVI is the minimum required standard index for countries to use in the 
absence of evidence to indicate that an alternative index is likely to be more accurate. 

The general formula is: 

 

Equation B-1 

NDVI values are unit-less and range from -1 to +1, with higher values indicating higher levels of 
green biomass and/or plant growth vigour.   

NDVI response is well understood for a wide range of land cover and biomass conditions. It can be 
calculated from most EO satellite image datasets, including those with the longest archive of 
imagery such as the Landsat and AVHRR series. By comparing spectral bands within each image, the 
NDVI minimizes artefacts from a range of sources that typically introduce errors into EO imagery, 
including topographic shading effects, atmospheric and illumination conditions, which improve the 
consistency of NDVI data across large areas.   

The NDVI is currently recommended as the standard vegetation index to use in assessing SDG 
Indicator 15.3.1 in the absence of information indicating that an alternative index is likely to be more 
accurate97.  The main limitations of the NDVI are that it can be sensitive to variations in soil 

 
97 http://earthobservations.org/documents/ldn/20200703_GEOLDN_TechnicalNote_FINAL_SINGLE.pdf 
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background conditions, and that it has a tendency to saturate at high vegetation cover and biomass 
levels. This can reduce the accuracy of NPP, biomass and cover models in tropical rainforest or arid 
regions. Several alternative vegetation indexes can be calculated from image data, many of which 
have been shown to be effective surrogates for fAPAR and highly correlated with NPP in a range of 
landscapes. Some of these alternative indices may be more suited to productivity assessments in 
certain countries than the NDVI.   

B.1.2 MODIS MOD17A3 Global NPP Model 
The MODIS MOD17A3HGF data product (hereafter referred to as MODIS NPP) estimates the annual 
change in kilograms of carbon per square metre, averaged at 500 m pixel resolution, integrated over 
each calendar year since 2000 (Running et al. 2004; Running and Zhao 2015). This is the only global, 
annually updated NPP dataset that is currently available. The use of this dataset simplifies the 
process of properly quantifying productivity, and this dataset has been used to convert NDVI to NPP 
units in several studies (Yengoh et al. 2015). However, there are a range of trade-offs with this 
dataset that make calculating growing season productivity from a time series of vegetation indices 
images the preferred option.   

The MODIS NPP model converts indices of fAPAR to estimated NPP using modelled parameters 
describing vegetation conversion efficiency (Ɛ) and climatic conditions (Running et al. 2004). This 
includes a range of indicators and estimated parameters that have been calibrated to match global 
conditions (Running and Zhao 2015). The uncertainties in each of the parameters accumulate in the 
model, and the data may not accurately represent local conditions at any particular location.   

Several studies have also demonstrated improved accuracy in relation to field validation data when 
satellite productivity observations are aggregated over all or part of the growing season rather than 
over the full year (Fensholt et al. 2013; Ma et al. 2015). For instance, the calendar year may split 
growing seasons in some regions, particularly the summer growing season in the southern 
hemisphere temperate regions.  

B.1.3 Enhanced Vegetation Index (EVI)  
One of the potential limitations of the NDVI is that it may be insensitive to changes in biomass or 
foliar coverage where the leaf area index (LAI), defined as half the total intercepting area per unit 
ground surface area (Chen and Black 1992), is high. Estimates of the LAI at which loss of sensitivity of 
NDVI occurs range from two (Carlson and Ripley 1997) to five (Schlerf et al. 2005).   

The tendency to saturate in high biomass areas, and the potential sensitivity of NDVI to variations in 
the brightness of the background material are addressed in the EVI (Equation B-2; Huete et al. 2002; 
Huete 1988):  

 

Equation B-2 

Where L  is the canopy background adjustment that addresses nonlinear differential NIR and red 
radiant transfer through a canopy, and C 1, C 2 are the coefficients of the aerosol resistance term, 
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which uses the blue band to correct for aerosol influences in the red band. The coefficients adopted 
in the EVI algorithm are, L=1, C1=6, C 2=7.5, and G  (gain factor)=2.5 (Huete et al. 2002). The EVI is 
also provided on the MODIS MOD13Q1 dataset.   

While the EVI may have some advantages under certain conditions (Huete et al. 2006), the inclusion 
of the blue band prevents it being calculated from several global datasets, including the AVHRR 
which has the longest archive of historical global data coverage. In addition, the low signal to noise 
ratio of the blue band can increase error in NPP estimates (Jiang et al. 2008). Improvements in 
atmospheric correction methods, which reduce apparent noise levels in the blue wavelengths, mean 
that its importance for calibrating EVI measurements is decreasing over time, and a 2-band EVI 
(known as EVI2, Equation B-3) using only the red and NIR bands has been proposed (Jiang et al. 
2008): 

 

Equation B-3 

EVI2 is available as an annual 5.6 km resolution product via NASA’s Making Earth Science Data 
Records for Use in Research Environments (MEaSUREs) program.98 In their review of the 
comparability between NDVI and EVI for land productivity monitoring, Yengoh et al (2015) suggest 
that as a surrogate for photosynthetic capacity, as opposed to biomass or LAI, NDVI is preferred over 
the EVI because it is more directly related to fAPAR and has fewer factors, which simplifies and 
facilitates calculation from a larger range of satellite image datasets.   

A recent unpublished study (Markos et al. in press) demonstrated that the EVI2 responds more 
rapidly to changes in moisture availability than the NDVI, which makes the EVI2 a more suitable 
index to use as a basis for climate calibration, particularly for the WUE transformation.  A recent 
study comparing the performance of a range of vegetation Indices to FLUXNET observations (Huang 
et al. 2019) indicated that the performance of all vegetation indices was improved following BRDF 
correction, which minimises impacts on apparent pixel values due to differences in sun and sensor 
position and the reflecting terrain.  They concluded that even though the EVI2 contains the same 
information as NDVI, the EVI2 was less sensitive to soil darkening and had the best performance in 
estimating GPP at the monthly scale among the traditional vegetation indices (Huang et al. 2019).   

B.1.4 Fractional Cover Models 
Another alternative to spectral indices are fractional cover products, which are becoming 
increasingly available at national and global scales (Guerschman et al. 2009; Guerschman et al. 2015; 
Hill and Guerschman 2020; Weissteiner et al. 2008). These products use the spectra of bare soil, 
photosynthetic vegetation and non-photosynthetic vegetation to calculate the proportion of these 
land cover types in each image pixel using an ‘unmixing’ method. Fractional cover products have an 
advantage over spectral indices, such as NDVI, in that the fractional cover products can report the 
proportion of non-photosynthetic vegetation in each pixel, to which the NDVI is not sensitive. 

 
98 https://lpdaac.usgs.gov/dataset_discovery/measures  
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Considering both the photosynthetic and non-photosynthetic components of the vegetation cover 
has proven beneficial for assessing the protection of the soil to erosion processes.   

Although a global fractional cover product is available at 500 m resolution from 2000 to present 
(Guerschman 2014), this product has not yet been properly validated outside of Australia. Potential 
sources of bias in these products include cover types being defined by spectral models that may not 
be representative of cover conditions in all regions, and the cover estimates being based on field 
measurements of the proportion the cover types which may be subject to measurement error.   

B.2 Climate calibration 

There is considerable debate in the scientific community around whether impacts from climate 
variability should be considered land degradation, or whether land degradation should be 
considered only when driven by direct human impacts such as land use and management activities.  
Some researchers suggest that calibrating for climate impacts is unnecessary, as any significant 
reduction in productivity, regardless of its driving factors, should be interpreted as degradation. 
Others feel that minimizing the influence of climatic factors on productivity time series is essential to 
identify the human factors contributing to productivity degradation. Section 4.1.3 in the IPCC report 
on Climate Change and Land (Olsson et al. 2019) provides a comprehensive overview of the different 
arguments in the debate.  

Separating the influence of moisture availability in NPP time series datasets is a significant technical 
challenge, and one of the most contentious areas of research associated with this analysis. The 
approach taken in this report is that both the calibrated and uncalibrated time series are potentially 
useful.  The climate calibrated time series may highlight areas where land degradation is being 
driven primarily by ‘direct’ human impacts such as land clearing or land cover conversion, whereas 
the uncalibrated time series may highlight responses to climate variability and long-term change.  
Furthermore, a comparison of calibrated and uncalibrated time series may reveal additional 
information about the condition of vegetation in degraded areas (see Section B.2.7).  We think this 
information may be of interest for land use planning to avoid future degradation and to optimise 
response and mitigation actions.  

Variations in plant productivity occur over a range of spatial scales and time frames, and from a wide 
range of drivers.  These range from natural disasters (localised and rapid), land use practices 
(localised and progressive), seasonal phenological cycles (annual and regional) and climate change 
(global and progressive).  The factors influencing long-term productivity levels vary from place to 
place and over time, and productivity levels in certain regions are more susceptible to influence from 
some factors than to others.   

In many regions, variations in NPP are highly correlated with differences in moisture availability, 
especially in semi-arid areas where water is the main limiting growth factor (Fensholt and 
Rasmussen 2011; Ivits et al. 2016; Wen et al. 2012; Wessels et al. 2007). One processing option that 
may assist with the interpretation of degradation is to calibrate the time series observations to 
minimize the influence of moisture availability and highlight the direct human-induced changes in 
NPP. Minimizing the influence of climatic factors on time series measurements of productivity can 
help to identify the relative importance of climatic versus human factors as drivers of degradation. 
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However, determining the best methods of climate calibration is a contentious and challenging 
issue.  

Several methods to calibrate time series images to minimize the influence of climatic or seasonal 
factors are available, each of which may be suitable only in certain vegetation types, climatic regions 
or for detecting only certain types or magnitudes of degradation. Climate correction methods 
typically attempt to calibrate NPP in relation to the total amount of rainfall in each growing season. 
However, NPP outcomes for a given rainfall level may also be influenced by temporal differences in 
precipitation during the growing season, soil type and topography, amongst other factors (Kumar et 
al. 2002). These factors vary at different rates and spatial scales, and some are better represented in 
existing datasets than others. Comprehensive correction for all these factors may require 
sophisticated modelling approaches that are not described in this document.   

Some of the most commonly used and best developed methods are presented below. Datasets 
showing results from several of these climate calibration processes are available globally, and as 
national subsets, for the period from 1981 to 2003 from the FAO’s Global Assessment of Land 
Degradation and Improvement website.99 These may be suitable where it is not possible to calculate 
these indices at national scales. A detailed review of the application and limitations of additional 
calibration methods is provided by Higginbottom and Symeonakis (2014).   

B.2.1 Rainfall Use Effic iency 
Rainfall use efficiency (RUE) is the ratio of annual NPP to precipitation (Le Houerou 1984). 
Accounting for RUE can improve the comparability of annual NPP measurements between years and 
between locations where NPP may be limited by variations in local rainfall. RUE correction is only 
appropriate in water-limited regions where there is a positive correlation between rainfall and NPP 
(Wessels 2009). Areas that should be masked from this analysis include agriculture and urban areas 
where productivity is related to management activities (e.g., fertilizer and irrigation) rather than 
limited by water availability (Bai et al. 2008).   

RUE relationships may break down in regions of very high rainfall where factors other than water are 
growth limiting, in areas with very low cover where evaporation consumes most rainfall (Fensholt et 
al. 2013), or where the vegetation cover is so low that growth response is insufficient to register a 
significant change in the chosen productivity index.  

B.2.2 Residual Trends (RESTREND) 
RESTREND (Evans and Geerken 2004; Wessels et al. 2007) is a development of the RUE method that 
uses linear regression models to predict an NDVI for a given rainfall amount. RESTREND calculates a 
linear model between the natural log of annual rainfall and annual NPP estimates based on the 
observation that vegetation productivity typically reaches a plateau in years with very high rainfall 
beyond which it does not increase (Hein et al. 2011; Milich and Weiss 2000). Trends in the difference 
between the predicted NDVI and the observed NDVI (the residual) are interpreted as  non-
climatically related productivity change (Wessels et al. 2012). This is illustrated in Figure B-1.   

 
99 http://www.fao.org/geonetwork/srv/en/main.search?any=glada 
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Subsequent analysis of the sensitivity of RESTREND to land degradation using simulated data 
(Wessels et al. 2012) indicated that it is difficult to detect degradation using RUE or RESTREND 
where there is a positive trend in precipitation. RESTREND is best suited to detecting extreme and 
rapid degradation resulting in differences between the predicted and observed sum of the growing 
season NDVI (∑NDVI) of around 20-40%. RESTREND was also determined to be unreliable when 
∑NDVI is reduced by 20% or more because the relationship between ∑NDVI and rainfall breaks down 
as a result of significantly reduced vegetation cover (Wessels et al. 2012). Additionally, both RUE and 
RESTREND can fail to detect land degradation where rainfall is variable over time (Wessels et al. 
2012). 

 
 

Figure B-1. Linear regressions between (a) accumulated precipitation and the maximum NDVI – the residual is illustrated by 
the line, and (b) the temporal trend of associated residuals (source Evans and Geerken 2004). 

B.2.3 Relative RUE 
Relative RUE (rRUE; del Barrio et al. 2010) increases the applicability of RUE to a wider range of 
climatic zones. This method involves rescaling NDVI observations to match the historical range of 
NDVI values within climatic aridity zones (Equation B-4).   

 

Equation B-4 

rRUE reports the position of the observed RUE-corrected NDVI within the range of NDVI values 
observed across the full time series within each climatic zone.  rRUE can be implemented with a 
freely available R package (r2dRue).100  

The rRUE method simplifies the application of RUE methods across large areas which may have 
varying climatic conditions, yet is sensitive to changes in the range of observations in the time series. 
The addition of new data may cause a rescaling of the potential data range. In addition, the 

 
100 https://r-forge.r-project.org/R/?group_id=752  
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occurrence within land units of locations receiving extra water, such as irrigated crops, will inflate 
the range of values indicating maximum vegetation performance within that region, which may lead 
to an underestimation of the productivity in other similar regions. This is likely to occur more 
frequently in developing countries where conversion of lands to irrigation is generally higher.   

B.2.4 Calibration against a Reference Site 
Helman et al. (2014) compared RESTREND results over three dryland sites with known land use and 
degradation conditions, and similar climatic, topographic, edaphic and vegetation characteristics 
using MODIS NDVI data. There was a significant negative trend in RUE for all sites but no significant 
trends were identified using RESTREND. While each site had a unique RUE characteristic, they 
concluded that a decreasing trend of RUE in the assessment sites was only revealed by comparison 
of NDVI trends against the control site.   

The use of control or ‘reference’ sites to aid interpretation of conditions at test sites may require 
normalization and rescaling of NPP time series to correctly identify trends in productivity over time 
(Sims and Colloff 2012). Ideally, control sites should contain identical vegetation communities and 
occur in the same bioclimatic region as the test sites, with the prime difference between the control 
and test sites being the land use type or intensity. In practice, ideal control sites do not exist, and the 
sensitivity of this method is usually limited by differences in vegetation characteristics, or by slight 
differences in the timing and magnitude of rainfall between the reference and test sites.   

B.2.5 Time Series Decomposition 
Seasonal Decomposition of a Time Series by Loess (STL): Time series decomposition is a statistical 
method that deconstructs a time series into the underlying categories of patterns.  STL101 (Cleveland 
et al. 1990), available in R, decomposes time series into three components: 

1. Seasonal, which is the underlying cycle of variation occurring over a certain period within the 
time series, such as annual phenological cycles;  

2. Trend, which is revealed by subtracting the seasonal component from the original time 
series;  

3. Remainder, which shows the proportion of variation in the original time series that is 
truncated by the Loess smoothing process.  

Jacquin et al. (2010) applied STL to non-smoothed and non-filtered MODIS NDVI time series data and 
a dataset of NDVI values accumulated over the growing season data over the Madagascar savannah. 
STL was found to be useful for identifying the start and end of the growing season, and for indicating 
the overall trend of NDVI decline over their study period. They interpreted their results in the 
context of local rainfall information rather than by transforming the data to minimise climatic 
influences per se.  

Breaks for Additive Seasonal and Trend (BFAST): BFAST (Verbesselt et al. 2010) is based on STL and 
includes tools to indicate departures from the long term trend. BFAST uses an ordinary least squares, 
residuals-based moving sum (MOSUM) test to identify whether one or more breakpoints are 

 
101 http://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html  



 

Good Practice Guidance | SDG Indicator 15.3.1 134 

 

occurring in a time series. At broad scales, the breaks identified in BFAST analysis tend to occur in 
grasslands rather than forests because of the more pronounced and rapid growth responses of 
grasses compared to deep rooted tree species. BFAST can also be sensitive to changes in the time 
series provided, e.g., reanalysing a time series with the addition of a few recent data points can 
result in a repositioning of the breaks identified throughout the time series. While BFAST has been 
explored for degradation assessment (DeVries et al. 2015), its suitability for this application requires 
further investigation.   

B.2.6 Water Use Efficiency (WUE) 
The method that appears to provide the most consistent representation of productivity responses to 
moisture availability across the widest range of land cover types is Water Use Efficiency (WUE: 
Ponce-Campos et al. 2013).  One of the assumptions in many RUE-based methods is that all of the 
rainfall in a given region is available for assimilation by plants. The hydrological cycle includes 
significant losses, however, including surface runoff of excess water, groundwater recharge and 
evaporation which influences the proportion of rainfall that is available for use by plants.  WUE 
incorporates these losses by calculating the ratio of NPP to evapotranspiration (ET), defined as 
precipitation minus the water lost to surface runoff, recharge to groundwater and changes to soil 
water storage.  

ET observations should be integrated from the time series data over the same period as the 
productivity observations each year (iET). Ponce-Campos et al. (2013) integrated their 
measurements over the calendar year, which may be appropriate for regions where plant 
productivity exhibits a unimodal and mid-year maximum.   

The method for calculating WUE corrected NPP (NPPw) per year is: 

 

Equation B-5 

Ponce-Campos et al. (2013) demonstrate a near linear relationship between NPP and ET across 
grassland and forest biomes in the United States, Puerto Rico and Australia.  The main limitation on 
the accuracy of WUE calibration is likely to be the availability and accuracy of the evapotranspiration 
data. Ponce-Campos et al. estimated ET using a model developed by Zhang et al., (2001) which 
computes mean annual evapotranspiration from changes in annual precipitation and the percentage 
of forest cover.  However, a range of alternative global ET datasets are available including:  

1. Global 8-day evapotranspiration data from MODIS, based on the Penman-Monteith 
equation102 

2. The GLEAM datasets103 which are based on microwave remote sensing and calculate 
evapotranspiration using the Priestly and Taylor model 

3. Global annual and monthly potential evapotranspiration,104 which is modelled using the 
WorldClim database105 at approximately 1km spatial resolution. 

 
102 http://www.ntsg.umt.edu/project/mod16  
103 http://www.gleam.eu/  
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A recent unpublished study (Markos et al. in press) has demonstrated that Peak NDVI typically lags 
peak EVI by about one month, and the faster response of EVI to water availability compared to NDVI 
improves the correlation between EVI-derived NPP and evapotranspiration for the purpose of water 
use efficiency calculation.   

B.2.7 Comparing NPP and WUE time series 
The definition of land degradation for SDG Indicator 15.3.1 does not distinguish between 
anthropogenic, climatic or biotic drivers of degradation.  The NPP time series retains the influence of 
drought and the effects of climate change, whereas these impacts are reduced in the WUE time 
series which highlights more direct anthropogenic impacts such as changes in land use activities.  
The view of this GPG is that calculating both the NPP and WUE time series may provide the ability to 
apportion land degradation impacts from these different drivers, which may help to identify the 
appropriate remediation activities and their success (see Sims et al. 2020).  

In general, an increase in NPP may be interpreted as an improvement in plant condition, provided 
the increase is not associated with a negative transition in land cover type.  Similarly, an increase in 
WUE indicates an increased efficiency of converting available water to biomass which may be 
interpreted as improved physiological functioning.  A positive correlation between increasing WUE 
and NPP might indicate efficient agricultural practices, for instance, whereas concordant negative 
trends might indicate inefficient land management, or be an early indicator of a reduction in 
ecosystem functional integrity.  A loss of NPP accompanied by an increase in WUE may reveal a 
process of adaptation to a drying climate, or as an increase in ecosystem resilience despite large-
scale altered hydroclimatic conditions (Ponce-Campos et al. 2013).   

For the purposes of the GPG, the NPP time series integrates greater impacts from climatic variations, 
whereas these effects are less prominent in the WUE time series, which may respond more to 
impacts from land use and management practices.  The relative magnitude of change in both the 
NPP and WUE time series may therefore indicate the relative significance of climatic versus 
anthropogenic drivers of changes in land productivity.  In practice, the correlation between WUE and 
NPP is highly variable and often low and/or negative.  The interpretation of the correlation between 
these time series requires further investigation, and must always be interpreted in the context of 
other information describing the main drivers of changes in land productivity for a given area.    

B.3 Image datasets and selection considerations 

The NDVI and EVI2 indices can be calculated from any Earth observing satellite sensors that include a 
red and near Infrared band, and many datasets that are available for free or at very low cost are 
well-suited to assessing land productivity at local, national and global scales (Table B-1). While 
sensors such as Landsat 8 Operational Land Imager (OLI) and Sentinel 2 Multi Spectral Imager (MSI) 
are ideal for productivity assessment at national scales, their relatively recent launch means that 
their archive of historical images is limited and may not be suitable for calculating baseline 
conditions.  Some guiding principles for selecting image datasets are provided in Table B-2.  

 
104 http://www.cgiar-csi.org/data/global-aridity-and-pet-database  
105 http://worldclim.org/  
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Table -B-1. Low or no-cost satellite sensors and data streams utilized for land surface phenology studies (modified from 106). 

Sensor Satellite Revisit 
period 

Data Source Data Record Spatial 
Resolution(s) 

Time Step 

AVHRR NOAA 
series 

Daily USGS/EROS 1989-present 1 km 1-week,  
2-weeks 

AVHRR NOAA 
series 

Daily GIMMS 3g 
http://ecocast.arc.nasa
.gov/data/pub/gimms/ 
3g.v0/ 

1982-2015 8 km Twice monthly 

AVHRR/ 
MODIS 

- Daily VIP30 (EVI2) 1981-2014 5.6 km Monthly 

Vegetation SPOT 4 & 
5 

1-2 days Copernicus Global 
Land Service 
http://land.copernicus.
eu/global/products/nd
vi  

1999-2014 1.15 km 10-day 

PROBA-V PROBA-V 1-2 days Copernicus Global 
Land Service 
http://land.copernicus.
eu/global/products/nd
vi 

2014-2020 333m and 
1km 

10-day 

MODIS Terra 1-2 days MOD17 (NPP and GPP) 2000 - present 500 m Annual 

MODIS Terra/ 
Aqua 

1-2 days MOD13 vegetation 
indices (NDVI and EVI) 

2000-present 250 m, 500 m, 
1 km 

8-day,  
16-day 

VIIRS Suomi 
NPP 

Daily NOAA CLASS 
VIIRS Land Team 
(nasa.gov) 

October 2011-
present 

375-750m Daily to yearly 
composites 

MSS Landsat 1-
5 

18 days USGS/EROS 1972-1992 79 m Distributed by 
scene 

PanMux/ 
MUXCAM 

CBERS 3 & 
4 

>3 days http://www.dgi.inpe.b
r/CDSR/ 

Oct 1999 -
present 

5-20 m Distributed by 
scene 

TM Landsat 4-
5 

16 days USGS/EROS 1982-2011 30 m Distributed by 
scene 

ETM+ Landsat 7 16 days USGS/EROS 1999-present 30 m Distributed by 
scene 

OLI* Landsat 8 16 days USGS/EROS Feb 2013-
present 

30 m Distributed by 
scene 

Sentinel 2 Sentinel 
2A and 2B 

5 days (from 
March 
2017) 

https://sentinel.esa.int
/web/sentinel/home 

Jun 2015-
present  

10 m – 20 m  
(VIS, NIR & 
SWIR) 

Distributed by 
scene 

Sentinel 3 Sentinel 3 1-2 days https://sentinel.esa.int
/web/sentinel/technic
al-guides/sentinel-3-
olci 

Oct 2016 - 
present 

300 m Distributed by 
Scene 

*Due to the relatively recent launch of these satellites their archive of historical images may not be sufficient to calculate 
baseline conditions.  

 
106 https://phenology.cr.usgs.gov/ndvi_avhrr.php  
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Table B-2. Guiding principles for image dataset selection 

Attribute Recommendation 
Revisit period and 
time series length  

Image datasets that observe the same location over time are required to assess the change in 
land productivity over time. The revisit period is the frequency at which the sensor observes 
the same location on earth.  A shorter revisit period provides a greater opportunity to capture 
transient features such as peak biomass, the onset of increased growth and the rates of 
productivity change at the commencement and cessation of the growing period.  More 
frequent observations also increase the opportunity of collecting cloud-free images of the 
Earth’s surface. The length of the time series is another key parameter.  Image datasets with 
long archives of frequently collected and well calibrated imagery provide the most consistent 
basis to assess change over time.   

Coverage and spatial 
resolution Pixels integrate the spectral characteristics of the target area over a spatial extent.  Large pixels 

(coarse spatial resolution) represent average conditions over a larger land area, which may not 
be desirable in landscapes with very complex or heterogeneous structures. Smaller pixels (finer 
spatial resolution) can represent objects in more detail to show the distribution of features of 
interest, which can improve the accuracy and representativeness of area measurements, 
especially in spatially complex landscapes. Smaller pixels can present some additional 
challenges, however.  Significantly higher image registration and GPS accuracy is required to 
correctly locate field sample locations in higher resolution imagery. Accurately locating your 
position in an image requires that the sum of the spatial errors in image registration and 
position location devices (GPS) should be less than 1 pixel.  For a given spatial extent on the 
ground, large pixels also result in a smaller dataset than the same area imaged at finer spatial 
resolution.  

Spectral resolution The number of wavelength bands, their centre wavelengths, and band width influence the 
sensitivity of a dataset to changes in productivity as well as the range of productivity indexes 
that can be calculated from it. It is essential that datasets contain all the spectral wavelengths 
required to calculate the preferred productivity index.   

Cost A wide range of datasets that present data at varying spatial, spectral and temporal resolutions 
are freely available, many of which are well-suited for assessing land productivity at global to 
national scales. Very high-resolution images including pixels smaller than 10m x 10m in size, 
which may be suitable in spatially complex or smaller landscapes, are also available 
commercially for purchase. While few high resolution datasets have an archive of repeat 
coverage historical images which is essential to assess change over time, high resolution images 
are becoming increasingly available through systems such as Google Earth and Bing maps. 

Ease of use Many image datasets are now provided in ‘analysis ready’ condition, which have been 
processed to minimise image artefacts associated with changes in illumination and atmospheric 
conditions, image detector sensitivity and/or topographic relief. These datasets provide the 
most accurate representation of changes in land surface conditions over time. Pre-processed 
vegetation index products are also provided from a range of sensors, and these are the simplest 
to use and interpret in terms of changes in land productivity. 

 

B.4 Harmonizing datasets from different sources 

Given the short historical archive of some of the datasets identified in Table B-1, and the continual 
emergence of new image datasets suitable for assessing productivity, methods to calibrate between 
datasets from different sensors may be required to provide continuity through time.   

Harmonization should account for: 

a) Differences in the sensor spectral responses; 
b) Differences in the radiometric calibration of the sensors; 
c) Differences in the processing level (e.g., if BRDF correction was applied); 
d) Differences in sensor geometric resolutions and map projections; 
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e) Differences in temporal resolution of time composites (e.g., weekly, 16-day or monthly 
composites). 

Usually, data providers ensure that all aspects of calibration of the instrument itself and the 
processing system is complete before making the data available for use, especially if the data is 
made compliant with the CEOS Analysis Ready Data (ARD) guidelines. In particular, the generation of 
Spectral Band Adjustment Factors accounting for the spectral aspect (a), the proper and traceable 
radiometric calibration (b), and a comparable processing to ortho-rectified Level 2A Bottom of 
Atmosphere (BOA) reflectance (c). Whenever possible, the end user should take advantage of 
harmonized multi-mission datasets, such as the existing NASA and ESA Sentinel-2 and Landsat 8 
harmonization initiatives.  

For geometric aspects (d), pixels in the highest resolution image (i.e., smaller pixels) should be 
aggregated to match the resolution of the larger pixels before comparison. A linear regression 
between images captured from both sensors over the same location at the same time can indicate 
the function required to translate one dataset to match the other. This method can be applied to 
compare vegetation indices, such as the NDVI, or between wavelength bands in the source imagery 
used to create the indices.   

Pixels in the less-well calibrated image should be transformed to match the values in the better 
calibrated dataset where possible. The MODIS MOD13 vegetation index datasets are regarded as 
being amongst the best calibrated (Yengoh et al. 2015). Alternatively, any two other datasets could 
be transformed to match the MOD13 values. It may also be useful to interpolate the time series to 
daily values before comparison to achieve temporal consistency (e). More detail on the application 
and validation of the linear regression calibration method can be found in Reeves et al. (2015).   

It is also possible to adjust the wavelengths from which the indices are created using Spectral Band 
Adjustment Factors.  For instance, the Visible Infrared Imaging Radiometer Suite (VIIRS) is proposed 
as a replacement for the MODIS sensors in future.  Skakun et al. (2018) derived spectral response 
functions in the red and NIR spectral domain from the calibration parameters for MODIS Aqua107 and 
VIIRS108.  Although these sensors image the Earth’s surface at approximately the same time of day, 
the day of the year within an 8-day period over which the best pixel composites are created may 
differ between these two datasets.  To minimise these impacts, Skakun et al. (2018) compared only 
observations captured on the same day of the year, and images that were captured close to nadir 
(view zenith angle less than 7.5°) to reduce the effects of different spatial resolution and BRDF 
between datasets. 

For information on harmonising higher resolution datasets such as Landsat and Sentinel 2 images 
see Roy et al. (2008).  To harmonize Landsat 8 and Sentinel-2 optical see Claverie et al. (2018), and 
for information on the fusion of coarser and finer resolution data such as MODIS and Landsat using 
the Kalman filter methods see Zhou and Zhong (2020).  

 
107 https://mcst.gsfc.nasa.gov/calibration/parameters 
108 https://ncc.nesdis.noaa.gov/VIIRS/VIIRSSpectralResponseFunctions.php 
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B.5 Validating productivity measurements 

Field validation of remotely sensed maps is a highly specialised area, and a detailed discussion of all 
aspects of this process is beyond the scope of this report. Loew et al. (2017) provides a 
comprehensive review of validation practices for satellite-based EO data, and Cleveland et al. (2015) 
provide detailed guidance on NPP validation in tropical forest environments.  Also, the CEOS Land 
Validation subgroup (of the Working Group Calibration and Validation) provides a hierarchy of 
validation stages which are used for assessing the data products developed from Earth 
Observation109.  

In the absence of, or to supplement quantitative validation data, expert opinion can be used to 
determine the validity of productivity assessment methods and metrics.  Teich et al. (2019) 
developed a software survey tool to harness expert opinion to identify the best representation of 
productivity Trend in Argentina.  While this process can be time consuming, the expert’s opinions 
also yielded additional information on the drivers of productivity change, and established a network 
which may increase the likelihood of adoption of new methods in future.   

Below, we briefly describe some of the data options available for validating estimates of NPP.  

B.5.1 Flux Tower Data 
Flux towers measure the exchange of carbon dioxide between plant canopies and the atmosphere 
and are a direct correlate with NPP at local scales (Running et al. 1999). Fluxnet110 maintains a global 
network of flux towers (Figure B-2) many of which are aligned with national flux monitoring 
programs.  Some examples of National flux tower programs include:  

 Australia: TERN111 and OzFlux112 
 Korea:  KLTER113 
 USA: NEON114 

 
109 https://lpvs.gsfc.nasa.gov/  
110 https://fluxnet.ornl.gov/  
111 http://www.tern.org.au/NASA-partners-with-TERN-to-map-global-carbon-bgp3623.html  
112 http://www.ozflux.org.au/  
113 http://www.klter.org/emain.htm  
114 http://www.neonscience.org/science-design/collection-methods/flux-tower-measurements  
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Figure B-2. Fluxnet carbon flux tower locations in October 2015115 

Limitations on the suitability of flux towers for productivity validation include the limited distribution 
of the towers and the cost of establishing a network of flux towers, which is not likely to be 
reasonable for countries that are developing their capacity to report on SDG 15.3.1. The sparse 
distribution of the towers can also complicate the spatial interpolation of productivity assessments. 
Another limitation is that flux towers actually measure Net Ecosystem Exchange (NEE), the balance 
between CO2 uptake by photosynthesis and the CO2 returned back to the atmosphere by respiration 
and decomposition, including not only the vegetation but also the microorganisms and soil organic 
carbon. Estimating NPP using flux towers requires a whole range of additional assumptions and 
ancillary measurements (see for example Clark et al (2001) for a discussion of NPP measurements in 
forests).  

Gross and Net Primary productivity measured through eddy covariance flux towers has been the 
main methodology to validate the MODIS NPP/GPP product (Section B.1.2). This was done 
thoroughly, and the MODIS product achieved a general accuracy of stage 3116, meaning that: 

“Uncertainties in the product and its associated structure are well quantified over a significant 
(typically > 30) set of locations and time periods representing global conditions by comparison with 
reference in situ or other suitable reference data. Validation procedures follow community-agreed-
upon good practices.” 

 
115 https://fluxnet.ornl.gov/maps-graphics  
116 https://lpvs.gsfc.nasa.gov/  
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B.5.2 Destructive biomass sample collection 
Validation of NPP estimates using destructive samples collected in the field is possible, but the 
specific methodology depends on the vegetation type. The difficulty relies on the fact that NPP is a 
flux variable (carbon being incorporated to plant tissues via photosynthesis) but biomass is a state 
variable (amount of carbon in plant tissues at any given time).  

In annual systems (e.g. annual crops, highly seasonal pastures) harvesting the green biomass (i.e. 
produced in the growing season) can be used as a surrogate for the annual NPP. In perennial 
systems and other systems with slow turnover, biomass harvesting has to be complemented with 
estimates of litterfall and decomposition and samples taken repeated times during the growing 
season. Sala and Austin (2000) provide a comprehensive description of methods for estimating 
aboveground NPP. Roxburgh et al (2005) also explains the fundamental concepts of NPP and the 
frequent confusion with other carbon fluxes and stocks in the ecosystem. 
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Appendix C Soil Organic Carbon 

C.1 Global SOC data sources 

IPCC defaults exist for the minimum six land cover classes and are stratified further into 
combinations based on soil type, climate and management. Spatial stratification based on these 
defaults would further improve the quality of the results at the national level. The available defaults 
are summarised for mineral and organic soils in Table C-1 and Table C-2, respectively. They are also 
provided in the IPCC Emission Factor Data Base which is regularly updated.117  

As an alternative to using IPCC defaults for reference SOC stocks in mineral soils, where available and 
considered robust and representative, reference SOC stocks could be derived from global spatial soil 
datasets and then the IPCC stock change factors be applied. For example, in the absence of a 
national SOC database, use of the SOC 0-30 cm product derived from SoilGrids250m v.2 as a stand-in 
for baseline SOC stock has been recommended for Land Degradation Neutrality target setting, 
noting this first requires derivation of stock SOC from SOC concentration, proportion of coarse 
fragments and bulk density. 

International organizations such as FAO, ISRIC World Soil Information, OpenLandMap.org118 and 
others have compiled and harmonized national soil information in several global datasets and 
continue with active compilation.119 These have different spatial resolutions but have potential for 
estimating reference SOC stocks. A summary of existing freely available sources is provided in Table 
C-3. Countries with little data may be able to use information from other countries to produce maps 
provided they share similar characteristics (e.g. climate, soils, management, and so on). 

 

Table C-1. Source of defaults in IPCC guidance documents for factors associated with change in SOC stocks in mineral soils. 

Default parameter IPCC 2003 
GPG 

IPCC 2006 GL IPCC 2013 WS IPCC 2019 

Reference (under native 
vegetation) SOC stocks (t C 
ha-1) 

Table 3.2.4 
Table 3.3.3 

Table 3.4.4 

Table 2.3 
 

Table 5.2 Table 2.3 (updated) 

Relative stock change 
factors 

Table 3.3.4 
Table 3.4.5 

Table 5.5 
Table 5.10 

Table 6.2 

Table 5.3 Table 5.5 (updated) 
Table 5.5A (new) 

Table 6.2 (updated) 

 

 

 

 
117 http://www.ipcc-nggip.iges.or.jp/EFDB/main.php  
118 https://openlandmap.org/#/?base=Stamen 
(OpenStreetMap)&center=45.5312,26.2112&zoom=3&opacity=80&layer=sol_organic.carbon_usda.6a1c_m&depth=0 
119 https://gitlab.com/openlandmap/compiled-ess-point-data-sets 
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Table C-2. Source of defaults in IPCC guidance documents for factors associated with change in SOC stocks in organic soils.  

Default parameter IPCC Document Chapter 
reference 

Table reference 

Annual CO2-C emission factor for drained 
organic soils in managed forests 

IPCC 2003 GPG Ch. 3 Table 3.2.3 

Annual CO2-C emission factor for cultivated 
organic soils 

IPCC 2003 GPG Ch. 3 Table 3.3.5 

 

Annual CO2-C emission factor for managed 
grassland organic soils 

IPCC 2003 GPG Ch. 3 Table 3.4.6 

Annual CO2-C and N2O-N emission/removal 
factors for drained organic soils in managed 
forests 

IPCC 2006 GL Ch. 4 Table 4.6 

Annual CO2-C emission factor for cultivated 
organic soils 

IPCC 2006 GL Ch. 5 Table 5.6 

Annual CO2-C emission/removal factors for 
drained grassland organic soils 

IPCC 2006 GL Ch. 6 Table 6.3 

Annual CO2-C on-site emissions/removals 
factor and CO2-C off-site emission factor for 
drained organic soils in all land-use 
categories 

IPCC 2013 WS Ch. 2 Tables 2.1, 2.2 

Annual N2O-N emissions factor for drained 
organic soils 

IPCC 2013 WS Ch. 2 Tables 2.3, 2.4 

CO2-C and CH4 emissions/removals factors 
for peat fires in all land-use categories 

IPCC 2013 WS Ch. 2 Table 2.7 

CH4 emission factors for reservoirs older 
than 20 years (> 20 years) – Flooded Land 
Remaining Flooded Land 

IPCC 2019 Ch. 7 Table 7.9 

CO2-C emission factors for reservoirs ≤ 20 
years old – Land converted to Flooded Land 

IPCC 2019 Ch. 7 Table 7.13 
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Table C-3. Examples of existing freely available global soil organic carbon datasets/maps. 

Global product Description 

Harmonized World 
Soil Database 
(HWSD)120 

 Version 1.2 is the latest update.  

 Spatial resolution is 30 arc seconds (about 1 km).  

 Includes soil organic carbon (%), 0-30 cm depth. 

 ISRIC has updated the HWSD (Batjes 2016) resulting in a database 
(WISE30sec)121 with more depth intervals and more parameters 
quantified, and an estimate of uncertainty (SD).  

 There is no assessment of accuracy.  

SoilGrids250m 
version 2.0 (de 
Sousa et al. 2020) 

 Version 2 released in May 2020.  

 Spatial resolution is 250 m. 

 Products of SOC percentage, bulk density, gravel fraction and depth 
to bedrock can be used to calculate a predicted SOC stock for 0-30 
cm (and to a greater depth) and uncertainties. 

 GSOC map122  Released in 2017; current 2019 version 1.5.0. 

 Spatial resolution is 1 km soil grids. 

 Soil organic C stock covering a depth of 0-30 cm.  

 Based on data from 110 countries, consists of national SOC maps. 

 There is no assessment of uncertainty. 

 A Soil Organic Carbon Mapping Cookbook123 was developed to 
provide technical support. 

Open Land Map 124  Released 2018, update pending.  

 Spatial resolution being revised to 100m with per pixel uncertainty 

 Products of SOC percentage, bulk density, gravel fraction and depth 
to bedrock can be used to calculate a predicted SOC stock for 0-30 
cm (and to a greater depth).  

 Reproducible methods outlined125. 

 

C.2 National and regional SOC datasets 

At the broadest level, the use of national datasets might include national stratification of land cover 
categories/sub-categories and country-specific defaults for SOC stocks and stock change factors for 
these units. Where countries have their own information on reference SOC stocks and/or change 
factors (see Table C-4) they should use these in accordance with Tier 2 methods. Ground-based data 

 
120 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/  
121  https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc  
122 http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map/en/ 
123  http://www.fao.org/documents/card/en/c/I8895EN 
124 www.openlandmap.org 
125 www.soilmapper.org (Hengl & MacMillan, 2019) 
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can be used to estimate SOC values and to derive stock change factors for mineral soils, as well as to 
estimate emissions and removal factors for organic soils. 

Table C-4.  Examples of continents/countries that have estimated spatially-explicit baselines of SOC stocks for the 0–30 cm 
layer. 

Country/continent Reference 

Africa 2020126 

Australia Viscarra Rossel et al. (2014) 

Belgium 2017127 

Chile Padarian et al. (2017) 

China Song et al. (2020) 

Denmark Adhikari et al. (2014) 

Europe de Brogniez et al. (2015) 

France Mulder et al. (2016) 

Ghana Owusu et al. (2020) 

Mexico Cruz-Gaistardo et al. (2017) 

New Zealand New Zealand Agricultural Greenhouse Gas Research Centre (2016) 

Nigeria Akpa et al. (2016) 

Scotland Poggio and Gimona (2014) 

South Korea Hong et al. (2010) 

Tanzania Kempen et al. (2019) 

Turkey Sonmez et al. (2017)  

USA Odgers et al. (2012) 

USA and Mexico Guevara et al. (2020) 

 

 

 
126 https://www.isda-africa.com/isdasoil/ 
127 http://www.geopunt.be/catalogus/datasetfolder/037427b6-d9ad-43ec-9c1e-b423396266d6 
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C.3 Tier 2 Steady State Method for mineral soils of Cropland 
Remaining Cropland 

IPCC 2019 includes an optional alternative Tier 2 steady-state method for mineral soils of Cropland 
Remaining Cropland (see Ch. 5, Vol. 4, Section 5.2.3.1). The method addresses additional complexity 
in soil C dynamics than Tier 1 or Tier 2 methods using default equations by subdividing SOC into 
three separate sub-pools with fast (Active sub-pool), intermediate (Slow sub-pool), and long (Passive 
sub-pool) turnover times. The turnover time of C within each sub-pool determines the length of time 
that C remains in the soil. The new method estimates C stock changes by incorporating spatial and 
temporal variation in climate, organic carbon inputs to soils, soil properties and management 
practices, but is not appropriate for irrigated rice cultivation and is not parameterised to estimate 
the change in soil organic C stocks due to biochar C amendments. The change in SOC stock is 
calculated using Equation 5.0a (Ch. 5, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines) and 
reproduced here (Equation C-1): 

       

 

  

Equation C-1 

Where: 

= annual SOC stock change factor for mineral soil, summed across all grid cells or 

regions, t C 

= annual stock change factor for mineral soils in grid cell or region i, t C ha-1
 

= Area of grid cell or region i, ha 

= SOC stock at the end of the current year y for grid cell or region i, t C ha-1 

= SOC stock at the end of the previous year for grid cell or region, t C ha-1 

= active sub-pool SOC stock in year y for grid cell or region i, t C ha-1
 (see Equation 

5.0b, Ch. 5, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines) 

= slow sub-pool SOC stock in year y for grid cell or region, t C ha-1
 (see Equation 5.0c, 

Ch. 5, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines) 

= passive sub-pool SOC stock in year y for grid cell or region i, t C ha-1
 (see 

Equation 5.0d, Ch. 5, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines). 
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Equations associated with the steady state method (Equations 5.0b – 5.0g) in PCC 2019 (Vol. 4, Ch. 5) 
are completed separately using data derived for each grid cell or region. Default parameters are 
provided in Table 5.5a for the three-pool steady-state C pool equations and in Tables 5.5b and 5.5c 
for the average lignin and nitrogen contents of the C input required to estimate the size of the three 
C pools (IPCC 2019). Note: The Tier 2 steady-state method developed here for Croplands may be 
applicable to other land uses, but this will require further development and parameterisation.    

C.4 Tier 2/3 Method for Biochar Amendments to Mineral soils 

As part of the refinements to Tier 2 (and Tier 3) methods (IPCC 2019), countries can now estimate 
the change in mineral soil organic C stock due to biochar amendments to mineral soils. Tier 2 
methods for biochar amendments utilize a top-down approach in which the total amount of biochar 
generated and added to mineral soil is used to estimate the change in soil organic C stocks with 
country-specific factors. The impact of biochar C amendments on mineral soils can be estimated 
using Equation 2.25A (Ch. 2, Vol. 4, 2019 Refinement to the IPCC 2006 Guidelines) and reproduced 
here (Equation C-2), and adding this estimate to the result from Equation C-1 above: 

 
Equation C-2 

Where: 

= the total change in carbon stocks of mineral soils associated with biochar 

amendment, t sequestered C yr-1 

 = the mass of biochar incorporated into mineral soil during the inventory year for 

each biochar production type p, t biochar d.m. yr-1 

 = the organic carbon content of biochar for each production type p, t C t-1
 biochar d.m 

 = fraction of biochar carbon for each production type p remaining (unmineralised) 

after 100 years, t sequestered C t-1
 biochar C 

n = the number of different production types of biochar. 

Note: Since the impact of biochar amendments is a separate calculation and summed with the result 
from Equation 5-3, it is essential that biochar C is not included as an organic amendment in the 
estimates of SOCmineral in Equation C-2.  

Country-specific values for the C content of the forms of biochar can be measured directly from 
representative samples of biochar, or may also be based on published data on carbon content of 
biochar produced using the same feedstock and process conditions as the biochar that is applied to 
soils in the country. It is not possible to measure directly the fraction of biochar C remaining after 
100 years due to the time scales involved. Thus, this parameter is estimated from other data 
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including the elemental composition of biochar either measured directly from representative 
samples or derived using published equations relating composition to mean residence time or half-
life, or from published data for biochar produced using similar process conditions as the biochar that 
is applied to soils in the country (for details see p. 2.41, Ch. 2, Vol. 4, 2019 Refinement to the IPCC 
2006 Guidelines). Justification is required if a permanence timeframe other than 100 years is used. 

The additional activity data required to support a Tier 3 method for biochar C amendments will 
depend on the processes represented and the environmental variables required as inputs to the 
model (IPCC 2019). Because responses to biochar amendments including priming effects, soil 
greenhouse gas emissions, and plant production all vary with biochar type, climate, and soil type, 
and in some cases, with vegetation type and management (e.g. Wang et al. 2016), Tier 3 methods 
may require environmental data on climate zones, soil types, vegetation types and management 
systems, in addition to the amount of biochar amendments in each of the individual combinations of 
strata for the environmental variables. More detailed activity data specifying the process conditions 
for biochar production or the physical and chemical characteristics of the biochar may also be 
required. 

C.5 Examples using default calculations 

Example 1: Reporting unit with uniform climate, soil type and broad land cover class but differing cropland 
management systems 

The following example (modified from IPCC 2003) shows calculations for aggregating areas of SOC stock 
change within a reporting unit over a 5-year reporting period. The reporting unit in a warm temperate moist 
climate on Mollisols (classified as high activity clay (HAC) mineral soil in the IPCC (2006) guidelines) is made up 
of 10,000 ha of permanent annual cropland. Using the IPCC defaults (Table 2.3, Ch. 2, Vol. 4, IPCC 2019), native 
reference carbon stock (SOCREF) for the region is 64 t C ha-1.  

At the beginning of the calculation period, the distribution of cropland systems was 4,000 ha of annual 
cropland with low carbon input levels and full tillage and 6,000 ha of annual cropland with medium input levels 
and full tillage. Default stock change factors for croplands are provided in Table 5.5, Ch. 5, Vol. 4, IPCC 2019. 
Using Eqn 5-3128, initial soil carbon stocks (SOC0) for the area were:  

4,000 ha × (64 t C ha-1 × 0.69 × 1 × 0.92) + 6,000 ha × (64 t C ha-1 × 0.69 × 1 × 1) = 427,469 t C.  

With parameters: 
Low C input       Medium C input 
Full till                 Full till 

Area (A; ha)                                                                          4000                    6000 
Reference carbon stock (SOCREF; t C ha-1)                      64                         64 
Land use stock change factor (FLU)                                  0.69                      0.69 
Management regime stock change factor (FMG)          1.0                        1.0 
Organic matter input stock change factor (FI)               0.92                     1.0 
 

 
128 Formulation B of the Eqn. is used here (see Box 2.1, Vol 4, IPCC 2006) which assumes activity data with transition matrices where land 
use changes are known explicitly rather than aggregate statistics. 
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In the (current) measurement year, there are: 2,000 ha of annual cropping with full tillage and low C input, 
7,000 ha of annual cropping with reduced tillage and medium C input, and 1,000 ha of annual cropping with 
no-till and medium C input. Thus, total soil carbon stocks in the reporting period (SOC0-T) are:  

2,000 ha × (64 t C ha-1 × 0.69 × 1 × 0.92) + 7,000 ha × (64 t C ha-1 × 0.69 × 1.05 × 1) + 1,000 ha × (64 t C ha-1 × 
0.69 × 1.10 × 1) = 454,406 t C.  

With parameters: 
Low C input        Medium C input        Medium C input 
Full till                 Reduced till                No till 

Area (A; ha)                                                                          2000                    7000                            1000 
Reference carbon stock (SOCREF; t C ha-1)                      64                        64                                 64 
Land use stock change factor (FLU)                                  0.69                     0.69                             0.69 
Management regime stock change factor (FMG)           1.0                       1.05                             1.10 
Organic matter input stock change factor (FI)                0.92                    1.0                                1.0 
 

The average annual stock change over the period for the entire area is: (454,406 – 427,469) t C / 20 yr = 26,938 
t C/ 20 yr = 1,347 t C yr-1 increase.  

Using Eqn 5-2, over our reporting unit area of 10,000 ha and reporting period of 5 years this is equivalent to 
1,347 / 10,000 ha = 0.135 t ha-1 yr-1 = 0.135 × 5 = 0.67 t ha-1 increase. There are no organic soils in this 
reporting unit. 

Calculation of 95% confidence intervals uses the following IPCC default error values: 

SOCREF: 64±5%; 

FLU: long-term cultivated 0.69±16%; 

FMG: full tillage 1.0±50% (no estimate available, assumed error); reduced tillage 1.05±4%; no-till 1.10±4%;  

FI: low input 0.92±14%; medium input 1.0±50% (no estimate available, assumed error); 

A: Area (no uncertainty assumed). 

Using Eqn. 5-8, the percentage uncertainty in the product of the quantities (half the 95% confidence interval 
divided by the total and expressed as a percentage) for t0 is: 

 = (0.4 ×  ) + (0.6 ×  ) = 65% 

And for tn is: 

= (0.2 ×  ) + (0.7 ×  + (0.1 × ) = 53% 

To calculate relative change (rSOC) from Eqn 5-8 for this reporting unit, where SOCt0 is 427,469 t C / 10,000 ha = 
42.7 t ha-1 and SOCtn is 454,406 t C / 10,000 ha = 45.4 t ha-1: 

rSOC = (45.4-42.7) / 42.7 × 100 = 6.3% 

Based on an increase in carbon stocks of 6.3%, this reporting unit has not degraded over the reporting period.  

 

Example 2: Reporting unit with uniform climate, two soil types and conversion between land cover classes 
from Forest land to Cropland 
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The following example shows calculations for SOC stock change within a reporting unit over a 10-year 
reporting period. The reporting unit in a warm temperate dry climate is made up of 10,000 ha of native forest 
land; 3,000 ha on low activity clay (LAC) soils and 7,000 ha on high activity clay (HAC) soils.  

At the beginning of the calculation period, using the IPCC defaults in Table 2.3,  Ch. 2, Vol. 4, 2019 Refinement 
to the IPCC 2006 Guidelines, the native reference carbon stock (SOCREF) is 19 t C ha-1 for the LAC soils and 24 t C 
ha-1 for the HAC soils. Note: If an average baseline was being calculated, this would be the average of the 
estimates over the period (e.g. two estimates over 10 years), but for simplicity, only one estimate is presented 
here. 

In the (current) measurement year:  

2,000 ha of native forest on LAC soils has been replaced by annual cropping with full tillage and low C input 
and 1,000 ha of native forest on LAC soils remains unchanged.  

5,000 ha of native forest on HAC soils has been replaced by annual cropping with full tillage and low C input 
and 2,000 ha of native forest on HAC soils remains unchanged. 

Degradation is assessed separately for each homogeneous land cover unit (in this case soil type) within the 
reporting unit, with the ordering of parameters within the equation as per Example 1: 

LAC soils 

t0 3,000 ha × 19 t C ha-1 = 57,000 t C 

tn 2,000 ha × (19 t C ha-1 × 0.69 × 1 × 0.92) + 1,000 ha × 19 t C ha-1 = 43,122 t C 

Calculation of 95% confidence intervals uses the following IPCC default error values: 

SOCREF: 19±16%; 

FLU: long-term cultivated 0.69±16%; 

FMG: full tillage 1.0±50% (no estimate available, assumed error); 

FI: low input 0.92±14%. 

A: Area (no uncertainty assumed). 

Using Eqn. 8, the percentage uncertainty in the product of the quantities (half the 95% confidence interval 
divided by the total and expressed as a percentage) for t0 is 90%, and for tn is: 

= (0.67 ×  ) + (0.33 × 16) = 43% 

To calculate relative change (rSOC) from Eqn 8 for this homogeneous land cover unit: 

SOCt0 is 57,000 t C / 3,000 ha = 19 t C ha-1 and SOCtn is 43,122 t C / 3,000 ha = 14.37 t C ha-1: 

rSOC = (-14.37-19) / 19 × 100 = -24.4% 

Area LAC soils degraded = 2,000 ha 

HAC soils 

t0 7,000 ha × 24 t C ha-1 = 168,000 t C 

tn 5,000 ha × (24 t C ha-1 × 0.69 × 1 × 0.92) + 2,000 ha × 24 t C ha-1 = 124,176 t C 

Calculation of 95% confidence intervals uses the following IPCC default error values: 

SOCREF: 24±5%FLU: long-term cultivated 0.69±16%; 
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FMG: full tillage 1.0±50% (no estimate available, assumed error); 

FI: low input 0.92±14%. 

= (0.71 ×  ) + (0.29 × 5) = 40% 

To calculate relative change (rSOC) from Eqn 8 for this homogeneous land cover unit: 

SOCt0 is 168,000 t C / 3,000 ha = 24 t C ha-1 and SOCtn is 124,176 t C / 7,000 ha = 17.74 t C ha-1: 

rSOC = (17.74-24) / 24 × 100 = -26.1% 

Area LAC degraded = 5,000 ha 

The total area degraded in the reporting unit is 2,000 ha + 5,000 ha = 7,000 ha 

 

C.6 National monitoring 

Because estimates from default values and maps have wide associated uncertainties, more sensitive 
methods are recommended to detect SOC stock change. Where possible, it is good practice to use 
ground-based monitoring of SOC stocks to: 

i) Calibrate and validate models for spatial and temporal estimation of SOC stocks; 

ii) Detect and interpret any changes detected, assess their causes, and identify management 
interventions that improve SOC stocks.  

In the context of SOC stock change, examples of relevant ground-based observations include: 

 Inventories (national, subnational) based on plot (or transect) measurements; 
 Intensive monitoring studies, where the focus is on ecosystem functioning and processes; 
 Auxiliary spatial data on land use, management, disturbance history, soil type which can be 

used to guide the selection and application of emissions and removals factors; 
 Research data that can be used to estimate emissions and removals.  

Judicious soil monitoring networks at (supra-) national scale can provide information on direct 
changes in SOC stocks relative to the defined baseline through repeated measurements (e.g., 
decadal) at a given site to provide a set of point observations that represent the variation in climate, 
soil, land use and management at the national scale. The recommended approach for this (i.e., 
model-based or design-based) must be determined at an early stage (Brus and de Gruijter 1997; Brus 
and de Gruijter et al. 2006; Webster and Oliver 2007).  

The determination of SOC stock requires measurements of SOC concentration, soil bulk density and 
gravel content. Monitoring is challenging because SOC stocks can change slowly (often over decades) 
and early detection can be difficult. Short-range spatial variation is typically large and can be easily 
confused with temporal variation, and measurement is often time consuming and relatively 
expensive (McKenzie et al. 2002).  

Sampling, i.e., the selection of locations and times on which observations are taken, is an important 
part in mapping and monitoring of soil carbon stocks. Indeed, appropriate sampling design is 
essential for the success of monitoring programs for detecting changes in SOC stock. It is good 
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practice to use appropriate sampling designs for ground-based measurements to enable robust and 
reliable estimation of SOC stocks and stock change. Some considerations in the measurement and 
monitoring of SOC stocks include: 

 Spatial sampling strategies (site selection, sampling locations, number of samples, 
compositing, and so on). 

 Temporal sampling strategies (timing, frequency). 
 Measurement (consistency, accuracy, cost, method (direct or sensors), and so on). 
 Scaling of point measurements to areal estimates. 

Specific guidance on these aspects is context-specific, and is not provided here, but is covered 
elsewhere (e.g. de Gruijter et al. 2006; Chappell et al. 2013; DotE 2014b; Batjes and van Wesemael, 
2015). For example, within monitoring networks, sites can be organised according to different 
sampling schemes, such as regular grid, stratified approach or randomized; different statistical 
methods should be associated with each of these sampling designs. Further monitoring methods 
must consider the minimum detectable difference (Batjes and van Wesemael, 2015). Different 
protocols for field sampling, measurement and SOC stock calculation (e.g., fixed depth versus 
equivalent mass) are used across the world. Direct measurement of bulk density and proportion of 
coarse fragments129 (>2 mm, by mass) is necessary. Cost-effective, proximal and airborne sensing 
techniques, such as soil spectroscopy, may be used (Viscarra Rossel and Hicks 2015; Viscarra Rossel 
et al. 2016b) while recognizing the continued need for conventionally-measured SOC content (e.g., 
dry combustion) in reference laboratories to calibrate such values. Benchmark sites and ‘round-
robin’ tests will be needed to allow for worldwide inter-calibration of soil analytical methods.   

Ideally, soil samples from soil monitoring networks should be archived to allow re-analysis as new or 
updated techniques are developed, implying additional costs for data storage and handling. Further, 
the range of soil and ancillary data (e.g., climate and land use history) collated through soil 
monitoring networks and other field sampling programs should be stored in freely-accessible global 
information systems, with the main socio-economic and biophysical driving variables at relevant 
scales, to support global SOC mapping using either geo-statistical or ecosystem modelling 
approaches. In many countries there are no national systems in place for statistically-based sampling 
of SOC, while in others they are in the planning or early stages of implementation. Few systems are 
located in developing countries where most deforestation and land use change is occurring (van 
Wesemael et al. 2011; Batjes and van Wesemael 2015). For example, see Box C-1. Further examples 
of soil monitoring networks and sample designs in selected countries are provided in Table C-5. 

Proximal sensing: The development of new analytical methods based on sensing can help with the 
acquisition of data for SOC stocks, including estimating baselines (see Box 5-2). Sensors can provide 
rapid, accurate, non-destructive and inexpensive measurements of soil properties. For carbon 
accounting, they need to be accurate, sensitive to detecting small changes in SOC stocks, and enable 
timely feedback to account for the change. There are reviews on the use of soil sensing for 
measuring SOC concentration which highlight the usefulness of visible-near infrared and mid-
infrared spectroscopy (Stenberg et al., 2010; Bellon-Maurel and McBratney, 2011; Viscarra Rossel et 

 
129 Regional differences e.g. where “< 1mm” is used as the limit, mainly former Soviet Union and satellite countries. 
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al., 2011; Reeves et al., 2012; Izaurralde et al., 2013), although further work is required, for example, 
in terms of selecting the proper spectral range of the sensor, the pre-processing methods, and the 
calibration techniques (Angelopolou et al. 2020). Although there are fewer articles that address the 
sensing of soil bulk density, there have been some recent advances that use gamma-ray attenuation 
to accurately measure soil bulk density (Lobsey and Viscarra Rossel 2016). The calculation of SOC 
stock requires measures of bulk density and gravel content, and new systems that integrate different 
soil sensors (e.g., visible-near infrared; gamma-ray attenuation, digital cameras) with robust 
statistical analytics and modelling are being developed to address the lack of such data for 
monitoring SOC stocks (Viscarra Rossel et al. 2017). Furthermore, there is recent work 
demonstrating the use of soil sensors for SOC stock base-lining (Viscarra Rossel et al. 2016a). A 
recent review assessing the potential of proximal soil sensing techniques for carbon accounting 
(England and Viscarra Rossel 2018) concluded that proximal sensing can be used for soil organic C 
accounting, but methods need to be standardized and procedural guidelines developed to ensure 
proficient measurement and accurate reporting and verification. Accounting frameworks should 
allow for efficient updating with new measurements, data and models as they become available.  

 

Table C-5. Examples of soil monitoring networks and sampling design in selected countries1. 

Country Objective Coverage2 Soil sampling 

   Timing Design Sub-
samples 

Depth 
(cm) 

Frequency 

Belgium National 
SOC 
monitoring 

CL, GL; 
Belgium 

1950-1970; 
resampled 
2004-2007 

Stratified Composite 0-30, 0-
100 

Once, resampling 
funding-dependent 

Germany National 
SOC 
monitoring 

CL, GL 2010 Grid Composite 10 cm 
slices to 
100 cm 

Every 10 years 

Mexico National 
SOC 
monitoring 

FL, d non-
FL (GL and 
shrubs) 

2003; each 
year 20% 
sites 
resampled 

Grid Composite 0-30, 30-
60 

Every 5 years 

New 
Zealand 

National 
SOC 
monitoring 

All regions 
and land 
uses 

1996 Stratified Single Variable, 
sampled 
by 
horizon 

Resampling ongoing 

Sweden National 
SOC 
monitoring 

~3 Mha CL 1995 
(some 
1988) 

Grid Composite 0-20, 40-
60 

1995, 2005, 2015; 
every 10 years 

Australia Baseline 
SOC 
sampling, 
land use × 
soil class 

CL, GL 2009 Stratified Composite 0-10, 10-
20, 20-30 

Once, resampling 
funding-dependent 
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Brazil SOC 
response to 
land use/ 
mgmt 
change 

Rodonia 
and Matto 
Grosso 

~2007 Stratified Composite 0-10, 10-
20, 20-30, 
30-40 

Once 

China Regional 
SOC 
monitoring 

NE, N, E, 
S, NW, SW 

1985-1996 Stratified Composite 0-20 Annual sampling from 
2010 

1 Adapted from van Wesamael et al. 2011; Batjes and van Wesamael 2015; 2 CL cropland; GL grassland; FL forestland. 

 

Box C-1: Example of statistically based sampling of soil using LUCAS 

The European project LUCAS (Land Use/Cover Area Frame Statistical Survey)130 may provide some guidance for 
monitoring, although some modifications are recommended in the context of SOC stocks. In 2009, the 
European Commission extended the periodic LUCAS to sample and analyse the main properties of topsoil in 25 
(and later 28) Member States of the European Union (EU)131 in order to derive policy-relevant statistics on the 
effect of land management on soil characteristics. This topsoil survey represents the first attempt to build a 
consistent spatial database of the soil cover across the EU based on standard sampling and analytical 
procedures, with the analysis of all soil samples being carried out in a single laboratory. Soil samples have been 
collected from approximately 20,000 points at three time-periods: 2009–2012, 2015 and 2018. Details of the 
dataset from the first two samplings (2009-2012, 2015) is provided in Origiazzi et al. (2018). The topsoil survey 
was designed to monitor a number of soil properties. In the context of monitoring SOC stocks, two 
modifications would be recommended. First, sampling to depths that meet IPCC standards (i.e., to 30 cm) 
rather than the 20 cm currently used in LUCAS, and second, measuring bulk density in addition to SOC 
concentration to derive SOC stocks. The first rounds of sampling derived bulk density from spatial data on 
topsoil packing density available from the European Soil database, however, methods were modified in the 
2018 sampling to collect samples for the assessment of new properties including bulk density and thickness of 
the organic horizon in peat soils (Fernández-Ugalde et al. 2017; Origiazzi et al. 2018). 

 

 
130 http://esdac.jrc.ec.europa.eu/projects/lucas 
131 http://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR26102EN.pdf 
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Box C-2: Example of deriving a baseline using current and historical point data and archived soil samples 
combined with spectroscopic sensors  

Viscarra Rossel et al (2014) derived a baseline for SOC stocks in Australia for the period 2000–2013. They 
utilised data from a national Soil Carbon Research Program that produced current data on SOC stocks for 
agricultural regions of Australia. However, with this dataset alone, it would have been impossible to map the 
whole of the country because there was no data for the large majority of areas in the north, northwest and 
centre of Australia. Therefore, they used historical archives of soil samples and measured their carbon and 
bulk density with spectroscopic sensors to enhance the dataset so that it had good spatial coverage over the 
entire country. Without the new analytical capability from the spectroscopic sensors, it would have been too 
expensive to analyse the archived soil for organic carbon and not possible to analyse them for bulk density. 
This same approach has now been used elsewhere in the United States of America and China.  

C.7 Global biomass and debris data sources 

Where country-specific data are not available, it is good practice to apply the best available defaults 
for biomass carbon stocks and debris carbon stocks to national land cover maps obtained by EO 
data. For biomass, IPCC defaults exist for the minimum six land cover classes and are stratified 
further into combinations based on climate, ecology, disturbance or management. For debris, IPCC 
defaults exist for Forest land and mangroves (Wetlands) and are stratified further into combinations 
based on climate and forest type. Spatial stratification based on these defaults would further 
improve the quality of the results at the national level. The sources of available IPCC defaults for 
above ground biomass stocks and root to shoot ratios (for estimating below ground biomass from 
above ground biomass), and litter and dead wood carbon stocks in forests and mangroves, are 
summarised in Table C-6 and Table C-7 respectively. They are also provided in the IPCC Emission 
Factor Data Base which is regularly updated.132  

Where available and considered robust and representative, it is good practice to use global spatial 
datasets for biomass carbon stocks as an alternative to using defaults. Several global datasets have 
been compiled and regional maps for tropical areas have also been produced. With few tropical 
countries having national above ground biomass maps or reliable statistics on forest carbon stocks, 
regional maps may provide advantages compared to the use of default mean values. The majority of 
current global products map forest biomass only. Zhang et al. (2019) recently reviewed available 
regional and global gridded forest biomass products. Further, a biomass change map is now available 
(Santoro and Cartus 2019) and global biomass density maps at multiple points in time using data 
from dedicated space-based sensors are expected (Herold et al. 2019). 

Some examples of current global and regional biomass map products are provided in Table C-8. 
These cover a range of different spatial resolutions (100 m to 1 km) and have potential for 
estimating biomass carbon stocks. It should be noted that many products provide biomass in terms 
of dry matter rather than biomass carbon, so in these cases values would need to be converted to 
biomass carbon. It is likely that the predictions of biomass stocks derived from global or regional 
maps at a specified location will typically have very wide confidence intervals. In general, the use of 
datasets with the highest spatial resolution is recommended. 

 
132 http://www.ipcc-nggip.iges.or.jp/EFDB/main.php  
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Table C-6. Source of defaults in IPCC guidance documents for factors associated with estimating change in biomass carbon 
stocks. 

Default parameter IPCC 2003 
GPG 

IPCC 2006 
GL 

IPCC 2013 
WS 

IPCC 2019 

Carbon fraction of above ground forest 
biomass 

Default = 0.5 Table 4.3   

Ratio of below ground biomass to above 
ground biomass 

Table 3A.1.8 Table 4.4  Table 4.4 (updated) 

Above ground biomass stocks in natural and 
plantation forests 

Tables 3A.1.2 
& 3A.1.3 

Tables 4.7, 
4.8 

 Tables 4.7, 4.8 
(updated) 

Above ground net biomass growth in natural 
forests 

 Tables 4.9, 
4.10 

 Tables 4.9, 4.10 
(updated) 

Above ground volume growth in plantations  Table 4.11A 

(excl. 11B) 

 Table 4.11 
(updated) 

Above ground biomass for various types of 
perennial croplands 

Table 3.3.2 Table 5.3  Table 5.3 (updated) 

Biomass carbon stocks present on Land 
Converted to Cropland in the year following 
conversion 

Table 3.3.8 Table 5.9  Table 5.9 (updated) 

Above ground biomass for various types of 
grasslands 

Table 3.4.2    

Ratio of below-ground biomass to 
aboveground biomass for the major grassland 
and savanna ecosystems of the world 

Table 3.4.3 Table 6.1   

Biomass stocks present on grassland, after 
conversion from other land use 

Tables 3.4.2 
& 3.4.9 

Table 6.4   

Above ground biomass stocks in mangroves   Table 4.3  

Ratio of below ground biomass to above 
ground biomass in coastal wetlands 

  Tables 4.5, 
4.9 & 4.10 

 

 

Table C-7. Source of defaults in IPCC guidance documents for factors associated with estimating change in litter and dead 
wood carbon stocks. 

Default parameter IPCC 2003 
GPG 

IPCC 2006 GL IPCC 2013 WS IPCC 2019 

Forest litter and dead 
wood carbon stocks 

Table 3.2.1 & 
3.2.2 

Table 2.2  Table 2.2 (updated) 

Litter and dead wood 
stocks in mangroves  

  Table 4.7  
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Table C-8. Examples of existing freely available global or regional biomass/biomass carbon maps 

Scale Map product Description 

Global Harmonized global maps of 
above and below ground 
biomass carbon density in the 
year 2010133 

 Harmonized global maps of above and below ground 
biomass in 2010 at 300 m resolution. 

 Biomass carbon density estimates with quantified 
uncertainty. 

 The harmonization approach used existing 
independent, landcover-specific biomass maps and 
ancillary layers. A predictive model was used to gap 
fill where existing maps were not available for 
particular epochs of interest.  

Global CCI Biomass134  Map products currently being developed. Aim to 
provide global maps of above ground biomass for 
four epochs (mid 1990s, 2010, 2017 and 2018) to 
support quantification of biomass change. 

 The mapping aims to achieve 500 m to 1 km spatial 
resolution with a relative error of less than 20% 
where AGB exceeds 50 Mg ha-1. 

 2017 dataset (AGB and AGB standard error) has been 
completed as part of Climate Research Data Package 
v.1135.  

Global GlobBiomass project136,137   Map product currently being developed. 

 Will have specified requirements to spatial resolution 
(150-500 m) and an accuracy of 70% or better with 
the reference year 2010.  

 The map will be based on the combination of several 
SAR, LiDAR and optical datasets as well as established 
algorithms for the retrieval of forest variables at 
regional to continental scale. 

 One product already available: Global, remotely 
sensed map of woody AGB in living trees with DBH 
greater than 10 cm26 and masked to pixels containing 
Landsat-identified tree cover in 2010. Native 
resolution of 100 m. Includes accompanying standard 
error of predictions layer. 

Global New IPCC Tier-1 Global  Global map of biomass carbon stored in above and 

 
133 Spawn, SA, Sullivan, CC, Lark, Tyler J, Gibbs, H (2020) Harmonized global maps of above and belowground biomass carbon density in the 
year 2010. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4561940 
134 http://cci.esa.int/biomass 
135 http://cci.esa.int/sites/default/files/biomass_D4.2_Climate_Research_Data_Package_V1.0.pdf 
136 http://globbiomass.org/products/global-mapping/  
137 Santoro, M. et al. (2018): GlobBiomass - global datasets of forest biomass. PANGAEA, https://doi.org/10.1594/PANGAEA.894711 
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Biomass Map for the Year 
2000138 

below ground living vegetation at 1 km resolution. 

 In conjunction with GLC2000 land cover data. 

 Accuracy/uncertainty not reported. 

Regional Integrated pan-tropical 
biomass map139 

 Product combines two existing datasets of vegetation 
above ground biomass (Saatchi et al. 2011; Baccini et 
al. 2012) into a pan-tropical map at 1 km resolution 
using an independent reference.  

 Dataset of field observations and locally calibrated 
high-resolution aboveground biomass maps 
harmonized and up-scaled to 14,477 1-km estimates.  

Regional National Level Carbon Stock 
Dataset (Tropics)140 

 Maps of above ground live woody biomass at 500 m 
resolution for the tropics in 2007-2008.  

 Used a combination of field measurements and 
space-borne LiDAR observations at 70 m spatial 
resolution from the Geoscience Laser Altimeter 
System (GLAS) instrument on board the Ice, Cloud 
and land Elevation Satellite (ICESat), and optical 
MODIS imagery at 500 m spatial resolution.  

Regional Above ground biomass map 
of African savannahs and 
woodlands141 

 Continental map of AGB of African savannahs and 
woodlands at a resolution of 25 m.  

 A value of AGB and its uncertainty has been assigned 
to each pixel. 

 Map built from the 2010L-band PALSAR mosaic 
produced by JAXA, with stratification into wet/dry 
season areas to account for seasonal effects and 
development of a direct model relating the PALSAR 
backscatter to AGB, with the help of in situ and 
ancillary data.  

Regional European Map of Living 
Forest Biomass and Carbon 
Stock142 

 Map of living forest biomass and carbon stock at 1 km 
resolution. 

 IPCC Tier 1 method (FRA data, CORINE Land Cover 
data). 

 
138 http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html  
139 http://www.wur.nl/en/Expertise-Services/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-
Sensing/Research/Integrated-land-monitoring/Forest_Biomass.htm  
140 http://whrc.org/publications-data/datasets/pantropical-national-level-carbon-stock/  
141 Bouvet et al. 2018. An above-ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR. 
Remote Sensing of Environment 206, 156-173. https://doi.org/10.1016/j.rse.2017.12.030 
142 Barredo et al.  2012. A European Map of Living Forest Biomass and Carbon Stock. EUR–Scientific and Technical Research; Joint Research 
Centre of the European Commission, Ispra, Italy. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-
reports/european-map-living-forest-biomass-and-carbon-stock-executive-report 
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C.8 National biomass and litter datasets  

National and regional products are based on Earth Observation data at finer resolutions than for 
global products. Typically, remote sensing techniques do not derive biomass directly, but use 
parameters that are related to biomass (i.e., model drivers/covariates), for example height, leaf area 
index, or net primary production. These parameters are widely incorporated into the mapping of 
above ground biomass, based on established relationships with above ground biomass. Available 
remote sensing data sources for producing biomass density maps currently include active sensors 
such as Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) sensors (IPCC 2019; 
GFOI 2020). Passive sensors are classified based on the spatial resolution of data as coarse resolution 
(pixel size >250 m, e.g. MODIS), medium resolution (pixel size 10-80 m, e.g. Landsat, Sentinel 2), and 
fine resolution (pixel size <10 m, e.g. Rapideye, SPOT and ALOS-2). From 2019, a series of targeted 
space-based missions will improve the capabilities for forest biomass predictions from LiDAR (e.g. 
GEDI, ICESAT-2) and SAR (e.g. BIOMASS, NISAR), and may be useful for national purposes (Herold et 
al. 2019; Quegan et al. 2019). Adequate field data are critical to biomass mapping from remotely 
sensed data, regardless of which methods are chosen (e.g. Lu et al. 2016). Apart from mapping 
biomass density, there are evolving approaches that monitor changes in biomass density through 
time directly from remotely sensed data (see Baccini et al. 2017). However, these approaches 
require consistent measurements and estimates, and this can be challenging when different satellite 
data sources and different ways of data processing and analysis are used. In addition to spaceborne 
LiDAR, airborne LiDAR, calibrated using ground-based estimates of biomass, can be used to produce 
reliable high-resolution biomass maps, and can be cost effective in some national circumstances, 
such as where terrain makes access difficult (GFOI 2016). Airborne LiDAR has a long history of 
operational use in forestry applications in developed countries (e.g. Næsset 2002; Wulder et al. 
2012) but is less common in tropical forests (but see for examples Xu et al. 2017; Ene et al. 2017) for 
several reasons including a higher diversity of tree species, the complexity involved in analysing the 
data, and the cost of routine collection of measurements (GFOI 2020).  

Examples of current national and sub-national biomass/biomass carbon map products are provided 
in Table C-9. Although country-specific data are desirable, countries with little data may able to use 
biomass information from other countries to produce maps as long as they share similar 
characteristics (e.g. climate, soils, managements, forest types, and so on). Although there has been 
some recent research around remote sensing of forest debris using LiDAR (e.g. Joyce et al. 2019; 
Lopes Quieroz et al. 2020), there are no mapped products. Thus, national estimates will rely on field 
measurement and monitoring.  
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Table C-9. Examples of biomass/biomass carbon maps at national or sub-national scales. AGB above-ground biomass 

Scale Country Product & Resolution Reference 

National Canada AGB; 250 m Beaudoin et al. 2017 

National China AGB, forest; 1 km Yin et al. 2015 

Sub-national Northeast China AGB; 500 m Zhang et al. 2014 

National Brazil AGB C; 50 m Englund et al. 2017 

National Mexico AGB, forest; 250 m Rodriguez-Veiga et al. 
2016 

National USA AGB, forest; 250 m Blackard et al. 2008 

National Australia Maximum AGB; 1 km Roxburgh et al. 2019 

National Cambodia AGB; 50 m Avtar et al. 2013 

National Poland AGB; 50-150 m https://globbiomass.or
g/products/regional-
mapping/regional-
biomass-mapping-
poland/ 

National Sweden AGB; 50-150 m https://globbiomass.or
g/products/regional-
mapping/regional-
biomass-mapping-
sweden/  

Sub-national Kalimantan (Indonesia) AGB; 50-150 m https://globbiomass.or
g/products/regional-
mapping/regional-
biomass-mapping-
indonesiakalimantan/  

Sub-national Eastern South Africa AGB; 50-150 m https://globbiomass.or
g/products/regional-
mapping/regional-
biomass-mapping-
south-africa/ 

 

 

 

 


