System dynamics modelling for sustainable production and consumption

Agricultural fertilizer use

Sibel Eker
Advanced Systems Analysis | Ecosystems Services and Management | Water
eker@iiasa.ac.at

19 March 2018
Though this be madness, yet there is method in it.

(William Shakespeare)
Sustainability and System Dynamics

A Global Forecast for the Next Forty Years

Jorgen Randers

State of the World

1900 2000 2100

Resources, Industrial output, Population, Food, Pollution
System Dynamics

\[\frac{dP}{P} = f \cdot dt \]
\[\int \frac{dP}{P} = \int f \cdot dt \]
\[\ln(P) = f \cdot t + c \]
\[P(t) = P(0) \cdot e^{ft} \]
System Dynamics

![Diagram showing population dynamics with feedback loops for birth rate, population, death rate, and carrying capacity.](image)

Population Growth

- Birth rate +
- Death rate -
- Population growth +
- Population decline -

Carrying Capacity

- Population relative to capacity +
- Mortality -
- Fertility +

Graph showing population over time with different scenarios.
System dynamics

• Top-down
• Descriptive (causal relations)
• Continuous
• Feedback-rich and nonlinear
Nitrogen Cycle

The Nitrogen Cycle

Nitrogen gas in atmosphere (N_2)

- Terrestrial food webs
 - Denitrification by bacteria
 - Nitrification by bacteria to NO_3^-
 - Nitrification by bacteria to NO_2^-
 - Ammonification by bacteria and fungi to NH_4^+
 - Nitrogen fixation by bacteria

- Freshwater
 - Nitrogenous wastes in soil

- Marine food webs
 - Nitrification by bacteria to NO_3^-, NO_2^-

- Oceans
 - Runoff
 - Fertilizers
 - Denitrification by bacteria to N_2
 - Nitrogenous sediments fall to ocean floor

Source: Khan Academy
FeliX Model
FeliX Model: Fertilizer Use

- Population
- Food demand
- Land requirement
- Crop yield
- Fertilizer use
- Food supply
- Agricultural land
- Deforestation
- Land discrepancy
FeliX Model: Fertilizer Use
FeliX Model: Fertilizer Use

Average Daily Calories per Capita

Total nitrogen consumption for agriculture

Cropland Yield

Agricultural and Forest Land

Average Daily Calorie Supply per Capita: BAU
Average Daily Calorie Supply per Capita: Historical Data

Total nitrogen consumption for agriculture: BAU
Total nitrogen consumption for agriculture: Historical Data

Cropland Yield: BAU
Cropland Yield: Historical Data

Agricultural Land: BAU
Forest Land: BAU
FeliX Model

Forest Protection Scenario

Forest Land

Agricultural Land

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU Forest Protected Land</th>
<th>BAU Forest Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>5.0 B</td>
<td>5.0 B</td>
</tr>
<tr>
<td>1920</td>
<td>3.75 B</td>
<td>3.75 B</td>
</tr>
<tr>
<td>1940</td>
<td>3.5 B</td>
<td>3.5 B</td>
</tr>
<tr>
<td>1960</td>
<td>3.25 B</td>
<td>3.25 B</td>
</tr>
<tr>
<td>1980</td>
<td>3.0 B</td>
<td>3.0 B</td>
</tr>
<tr>
<td>2000</td>
<td>2.75 B</td>
<td>2.75 B</td>
</tr>
<tr>
<td>2020</td>
<td>2.5 B</td>
<td>2.5 B</td>
</tr>
<tr>
<td>2040</td>
<td>2.25 B</td>
<td>2.25 B</td>
</tr>
<tr>
<td>2060</td>
<td>2.0 B</td>
<td>2.0 B</td>
</tr>
<tr>
<td>2080</td>
<td>1.75 B</td>
<td>1.75 B</td>
</tr>
<tr>
<td>2100</td>
<td>1.5 B</td>
<td>1.5 B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU Agricultural Protected Land</th>
<th>BAU Agricultural Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>7.0 B</td>
<td>7.0 B</td>
</tr>
<tr>
<td>1920</td>
<td>5.25 B</td>
<td>5.25 B</td>
</tr>
<tr>
<td>1940</td>
<td>4.5 B</td>
<td>4.5 B</td>
</tr>
<tr>
<td>1960</td>
<td>3.75 B</td>
<td>3.75 B</td>
</tr>
<tr>
<td>1980</td>
<td>3.0 B</td>
<td>3.0 B</td>
</tr>
<tr>
<td>2000</td>
<td>2.25 B</td>
<td>2.25 B</td>
</tr>
<tr>
<td>2020</td>
<td>1.5 B</td>
<td>1.5 B</td>
</tr>
<tr>
<td>2040</td>
<td>0.75 B</td>
<td>0.75 B</td>
</tr>
<tr>
<td>2060</td>
<td>0.0 B</td>
<td>0.0 B</td>
</tr>
<tr>
<td>2080</td>
<td>0.0 B</td>
<td>0.0 B</td>
</tr>
<tr>
<td>2100</td>
<td>0.0 B</td>
<td>0.0 B</td>
</tr>
</tbody>
</table>
FeliX Model
Forest Protection Scenario

Total nitrogen consumption for agriculture

Average Daily Calorie Supply per Capita
Conclusions

• System dynamics
 • to capture the core mechanisms behind sustainability challenges
 • to explore the future dynamics
 • to test our assumptions and policy interventions