Tradeoffs in implementation of SDGs: how to integrate perspectives of different stakeholders?

Method: multi-criteria optimization

Piotr Żebrowski

15 March 2018
Some challenges in implementing SDGs

SDGs are the globally accepted goals, but will be realized locally.

Diverse stakeholders: e.g., countries, regions, municipalities. Differing in their characteristics, responsibilities, and capabilities to meet them.

At least some coordination (e.g., in timing, allocation of resources) is needed in pursuing potentially conflicting SDGs.

Cooperation:
- fostered / enforced by central authority
- voluntary (no central authority)

How to implement them in a balanced way?

How to promote cooperation among stakeholders?
Outline

• Cooperation in presence of central authority:
 – Central planning and multi-objective optimization
• Voluntary cooperation:
 – Example: climate negotiations
 – Stakeholders and their utilities
 – Approaches to voluntary cooperation: fair allocation methods, bargaining games, Pareto rule
 – In search for fair solutions: back to multi-objective optimization
• Aggregating functions: formalization of notions of fairness
• Mapping the set of fair Pareto-optimal solutions
• Conclusions
SDGs from perspective of central planner

An authority acting as a central planner coordinating implementation of SDGs is immediately confronted with the following questions:

- How to track progress towards each particular SDG in a quantifiable way?
- How to appraise alternative policies of implementation of SDGs?
 - How to assess synergies and tradeoffs between SDGs?
- How to formulate balanced implementation strategies?

If there exist quantitative indicators of progress towards SDGs, it is possible to address these questions using the framework of multi-criteria optimization.
Multi-objective optimization problem

- Let X be the space of all feasible options x.
- Let $f_i(x)$ be the i-th objective function (e.g., level of realization of the i-th SDG if x is to be chosen).

Pareto-optimal solutions:
No possibility to further improve any objective without compromising the other(s).

Pareto-optimal solutions make utmost use of available options. It’s rational to restrict attention only to these solutions. But which solution represents a well balanced policy?
Finding balanced Pareto-optimal solution

Objective 2: SDG 2

- Build suitable **aggregated criterion** \(g(f_1(x), f_2(x)) \) encoding desired balance between objectives
- Rank Pareto-optimal solutions according to the value of the aggregated criterion
- Pick the solution which optimizes this aggregated criterion.

Pareto-optimal solutions

\(g = 1 \)
\(g = 4 \)
\(g = 7 \)
Challenges of voluntary cooperation

- Diverse stakeholders (e.g., countries):
 - Are motivated to cooperate with others by their self-interest (e.g., countries are primarily responsible for wellbeing of their citizens)
 - May invoke certain ethical notions (not necessarily shared by other stakeholders) to make case for their claims and interests.

- No authority able to impose a centrally developed policy or enforce coordination among stakeholders if it runs counter stakeholders’ interest.

- An impartial mediator helping to coordinate stakeholders’ actions may be appointed.

- ASSUMPTION: from now on we assume that stakeholders express their preferences towards outcomes of cooperation with use of their utility functions.
Problem: Climate treaty negotiations

- Nearly 200 countries signed the Paris agreement aiming at holding global warming below 2°C above the pre-industrial level.
- Countries contribute to collective climate action on a voluntary basis.
- Current countries’ pledges are insufficient to meet the 2°C target.
- Distributing the necessary collective mitigation efforts in a way satisfactory to all parties is of paramount importance.
Stylized example: Climate treaty negotiations

• Stylized example based on Barrett (2013). Countries negotiate the distribution of climate change mitigation burdens among them.

• To avoid catastrophic climate change, countries must collectively implement a minimal level of mitigation effort.

• Utility of country i if the climate catastrophe is avoided:

\[
\text{initial wealth}_i + \text{benefits of mitigation}_i - \text{costs of mitigation}_i
\]

• In case of catastrophic climate change, the utility of all countries is zero.

• **Objective:** Distribute the required mitigation efforts in a way agreeable to all countries.
Fair allocation methods

- Assumptions about stakeholders:
 - Rational and concerned primarily with their individual interests
 - Share common social norms (not necessary ethically justifiable).
- Axioms: certain common sense conditions characterizing a desired costs / benefits allocation. These conditions may represent:
 - Social norms (e.g., proportionality, solidarity or no dictatorship)
 - Technical requirements (e.g., consistency, monotonicity).
- Objective: given the stakeholders’ preferences design an allocation rule satisfying the chosen axioms.
- Problems with this approach:
 - Virtually no reference to ethics or distributive justice. Fairness of a solution is a subjective impression of stakeholder.
 - Requirement of commonly accepted social norms.
Bargaining games

• Assumptions about stakeholders:
 – Rational: interested in ensuring profitable cooperation but also in maximizing their share in common gains.
 – No commonly shared social norms.
• Axioms: conditions characterizing the bargaining process and players’ behavior.
• Objective: predict the result of bargaining, i.e. find a strategy which any rationally calculating player would play.
• Problems with this approach:
 – Prediction is not a prescription.
 – Solution simply reflects the balance of bargaining power, and is virtually of no ethical value.
Pareto rule and unanimity

• Assumptions about stakeholders:
 – Rational and concerned primarily with their individual interests.
 – No commonly shared social norms.

• Pareto rule:
 – If all stakeholders are indifferent about two alternatives then the group is indifferent too.
 – If at least one stakeholder prefers \(x \) to \(y \) and all others consider \(x \) to be at least as good as \(y \) then \(x \) is to be selected.

• Pareto rule rules out alternatives which are not unanimously acceptable.
Pareto rule and unanimity (cont.)

Pareto non-dominated solutions: unanimously better than \(x \)

Problems with Pareto rule:
- Unanimity is an extremely conservative approach
- Avoids confronting individual preferences with questions of justice.
- May lead to grossly unfair solutions.

Pareto rule implies that Pareto-optimal solutions (having no unanimously better alternatives) should be pursued, but Pareto rule alone does not ensure cooperation.
Question: Which Pareto-optimal solution is likely to be accepted by all stakeholders?

Answer:
• Chose appealing notion of fairness
• Build suitable **aggregated criterion** $g(u_1, u_2)$ encoding desired notion of fairness
• Rank Pareto-optimal solutions according to the value of the aggregated criterion
• Pick the solution which optimizes this aggregated criterion.
Ethical aspects and mathematical formalism

Ethical aspects of a solution (qualitative)

Value to be promoted

- e.g., equity

Fairness principles

- e.g., Rawlsian principles of fairness:

 Every stakeholder has a right to maximize his utility as long as it is compatible with the alike rights of other stakeholders.

 Inequalities in outcome are unjustifiable unless they are more beneficial to worse-off than to better-off individuals.

Mathematical formalism: Aggregating functions (quantitative)

Aggregating function encoding the value

- e.g., inequality measure as a formula

Conditions imposed on aggregating functions

- e.g., conditions characterizing a fair aggregating function:

 Impartiality: Permutation of arguments does not change the function’s value.

 Pigou-Dalton condition: Reducing inequalities is preferable and justified, as long as it does not change stakeholders’ order according to their utility levels.
Stylized example: Fair distribution of burdens

Fair solutions lie in this area

Four fair rational aggregating functions (increasing, symmetric, and satisfying Pigou-Dalton condition):

• **Ordered weighted average (OWA)**
 \[\sum_i w_i u_{(i)}, \quad w_1 > \ldots > w_n > 0, \sum_i w_i = 1 \]
 \(w_i \) and \(u_{(i)} \) are the weight and utility of \(i \)-th worst-off stakeholder

• **Generalized weighted mean (GWM)**
 \[\left(\sum_i w_i u_i^p \right)^{1/p}, \quad -\infty < p < 1 \]
 Interpretation: Degree of “egalitarianism”
 \(w_i \) and \(u_i \) are the weight and utility of \(i \)-th stakeholder

• **Distance to a reference point** \(u^R \)
 \[\left(\sum_i |u_i - u_i^R|^p \right)^{1/p}, \quad 1 < p < \infty \]
 Interpretation: Degree of “egalitarianism”
 \(u_i^R \) is the \(i \)-th coordinate of the reference point \(u^R \), \(u_i \) is the utility of \(i \)-th stakeholder

• **Underachievement function**
 \[\text{mean}(u) - \alpha \times \text{standard deviation}(u) \]
 \(u = (u_1, \ldots, u_n) \), \(u_i \) is the utility of \(i \)-th stakeholder
Stylized example: Preliminary conclusions

- Optimal solutions considered to be fair are confined to a relatively small section of the Pareto front.

- Within fair solutions, the **tradeoff between equity and efficiency is key**.

- Optimizing different types of aggregating functions gives very similar results, close to the set of generic solutions balancing equity and efficiency.

- Hypothesis: fair rational and Pareto optimal solutions can be obtained by optimizing OWA with decreasing weights.
Conclusions

• Multi-objective optimization is helpful in:
 – Designing centrally planned (or coordinated) implementation policies
 – Proposing Pareto-optimal solutions fostering voluntary cooperation

• It is possible to associate mathematical formalism with ethical notions of fairness and justice

• Fairness is the tradeoff between perfect equality (egalitarian solution) and maximal efficiency (utilitarian solution)
Thank you for your attention