Green bonds, transition to a low-carbon economy, and intergenerational fairness: Evidence from an extended DICE Model

Sergey Orlov12, Julia Puaschunder31, Elena Rovenskaya12, Willi Semmler341

1International Institute for Applied System Analysis (Austria)
2Lomonosov Moscow State University (Russia)
3New School for Social Research (United States)
4University of Bielefeld (Germany)
Motivation

• Policies to reduce emissions:
 1. Carbon pricing (ETS, carbon tax)
 2. Regulation
 3. Low carbon technology
 4. Large scale climate investments

• Disadvantages of 1.:
 1. Empirical evidence?
 2. Too slow?
 3. Politically difficult?
 4. Intergeneration fairness?

⇒ We propose mixed policies: tax and bonds

Global warming effects

© http://climate.nasa.gov/effects/
© http://www.easterbrook.ca/pmu199/?p=860
Overlapping generations framework (Sachs, 2015)¹

=> Sachs contrasts:
• Business-as-usual
• Mitigation effort by current generation, reimbursement through bond issuing
• Bond repayment through next generation

⇒ Claim: Intergenerational fiscal policy (bonds and taxes) is welfare improving for both generations

Caveats:
1. Phases are exogenous
2. Emission is exogenous
3. Taxes are exogenous

¹Jeffrey D. Sachs Climate Change and Intergenerational Well-being // The Oxford Handbook of the Macroeconomics of Global Warming, 2015, pp. 248-260
Continuous time framework (Flaherty et. al, 2016)²

- Three stages (phases):
 1. Business-as-usual scenario
 2. Green bonds issued compensating for climate change mitigation
 3. Bond debt repayment through taxation at later time period

- Each stage is solved separately with NMPC³ until the solution is close to equilibrium

Caveats:

1. Separate phases
2. No dynamic decisions on tax rate
3. Little calibration of the model

Use of DICE-2013R model with a mix of tax and bond financing

Why did we choose it?
- Core economic and climate variables
- Calibrated model
- Well-known tools to simulate (GAMS/CONOPT)

Objectives of using bonds:
- Politically feasible
- Speeding up the transition
- Intergenerational fairness
- Welfare improvement
DICE-2013R model

- mitigation effort, $\mu(t)$
- reduction
- CO$_2$ emissions
- Temperature increase
- Damages to GDP
- Economy
- Climate
DICE-2013R short description

Welfare $W = \sum_{t=0}^{T}(1 + \rho)^{-s}U(c(t), L(t))$ \[\text{max} \]

subject to

Economy

\[
Q(t) = [1 - \Lambda(\mu(t))]\Omega(t)Y(t) = C(t) + I(t)
\]
\[
K(t + 1) = I(t) + (1 - \delta_K)K(t)
\]
\[
E_{Ind}(t) = \sigma(t)[1 - \mu(t)]Y(t)
\]
\[
E(t) = E_{Ind}(t) + E_{Land}(t)
\]
\[
\Omega(t) = \frac{1}{1 + aT_{AT}^2(t)}
\]

Climate

\[
\begin{bmatrix}
M_{AT}(t + 1) \\
M_{UP}(t + 1) \\
M_{LO}(t + 1)
\end{bmatrix} =
\begin{bmatrix}
\xi_1 & 0 & 0 \\
0 & \phi_{11} & \phi_{12} & 0 \\
0 & \phi_{21} & \phi_{22} & \phi_{23}
\end{bmatrix}
\begin{bmatrix}
M_{AT}(t) \\
M_{UP}(t) \\
M_{LO}(t)
\end{bmatrix}
\]

\[
F(t) = \eta \log_2[M_{AT}(t)/M_{AT}(1750)] + F_{EX}(t)
\]
\[
\begin{bmatrix}
T_{AT}(t + 1) \\
T_{LO}(t + 1)
\end{bmatrix} =
\begin{bmatrix}
\xi_2 & 0 \\
0 & \phi_{11} & \phi_{12} & 0 \\
0 & \phi_{21} & \phi_{22} & \phi_{23}
\end{bmatrix}
\begin{bmatrix}
T_{AT}(t) \\
T_{LO}(t)
\end{bmatrix}
\]

Decision variables: $C(t), \mu(t)$ \[M \text{ – stock of carbon} \]
Two scenarios

DICE scenarios \((C(t), \mu(t))\):
- No mitigation (NM)
- Optimal mitigation (OM)

Sequential social welfare function:
\[W(t) = \sum_{s=0}^{t} (1 + \rho)^{-s} U(c(s), L(s)) \]
- \(\rho\) – discount rate
- \(c(t)\) – consumption per capita
- \(L(t)\) – labor
- \(U(c(t), L(t))\) – utility function

Plot of percentage change
\[\left[W^{OM}(t) - W^{NM}(t) \right] / W^{NM}(t) \]

Intergenerational problem
Bonds in the DICE model

• Dynamics of bonds

\[Bonds_{t+1} = (1 + Rate) \cdot Bonds_t - (Taxation_t - Abatement_t) \]

• Bonds have to be repaid

\[Bonds_T = 0 \]

• Initial governmental debt is zero

\[Bonds_0 = 0 \]
Optimal mitigation with bonds (OMB)

Decision variables: \(C(t), \mu(t), \tau(t) \)

\[
B(t + 1) = (1 + r_B)B(t) - [\tau(t) - \Lambda(\mu(t))]\Omega(t)Y(t)
\]

Sequence of three phases
Optimal mitigation with bonds (OMB)

- **Sensitivity of interest rate to bonds**
 - The lower the interest rate (more bonds issued) the faster the emissions decrease

- **Sensitivity of interest rate to tax**
 - The lower the interest rate (more bonds issued) the later bonds are repaid
Optimal mitigation with bonds (OMB)

- Pareto improvement over OM scenario
- Still no Pareto improvement over NM scenario
Pareto optimal scenarios

Constraints on consumption: $C(t) \geq C^{NM}(t)$, $0 \leq t \leq T$

Two more scenarios:
- Pareto optimal mitigation (POM) = OM + constraints on consumption
- Pareto optimal mitigation with bonds (POMB) = OMB + constraints on consumption
Pareto optimal scenarios

Constraints on consumption: $C(t) \geq C^{NM}(t)$, $0 \leq t \leq T$

- Pareto improvement of POMB over OM scenario and POM
Summary

Does bond financing of climate policy and repayment later through taxation help?

- Politically more feasible than carbon tax alone
- Speeding up the transition
- Intergenerational fairness
- Welfare improvement

- Needs complementary policies (regulation, low carbon technology, infrastructure..., see our IMF work)

Thank you for your attention!
Appendix: Portfolio Approach

Instead of a 2-asset model (capital stock and bonds) we can have multiple assets

\[
\max_{(C^*, \alpha)} \int_0^{\infty} e^{-\delta} U(C_t) dt
\]

s.t. \[\dot{W}(t) = \alpha_t R_{f,t} W_t + (1 - \alpha_t) R_{f,t} W_t - C_t \]

\[\dot{x}(t) = 1 \]

\[W_{dot} = K_{dot} + B_{dot}, \text{ or } K_{dot} = W_{dot} - B_{dot} \]

\[Q(t) = [1 - \Lambda(\mu(t))] \Omega(t) Y(t) = C(t) + I(t) \]

\[B_{dot} = G - \tau + (1 - \alpha_t) R_{f,t} W_t \]