Central Bank of Armenia

Working Paper 16/2/08

MIGRATION IN THE ESTIMATED NEW KEYNESIAN DSGE MODEL FOR ARMENIA AND RUSSIA

Haykaz Igityan

August 2016
CBA Working Paper
Monetary Policy Department

MIGRATION IN THE ESTIMATED NEW KEYNESIAN DSGE MODEL FOR ARMENIA AND RUSSIA

Haykaz Igityan

August 2016

Abstract
This paper develops DSGE model for Armenia and Russia allowing the Armenian household to supply labor both domestically and abroad. Paper models migration cost arising in a reallocation process of labor, which is absent in a basic New Keynesian framework. Russian migration policy is also taken into account during the construction of the model. The model is estimated by Bayesian technique using 22 time series of Armenian and Russian variables and 22 structural shocks. The estimation shows that the model reproduces Armenian and Russian data. Estimated structural shocks are supported by stylized facts and historical events. The model is able to generate real remittances data and represent Russian migration policy. Historical simulations show that the estimated model predicts quite well the observed movements of the business cycle. The paper also discusses the transmission mechanism of different structural shocks on the migration and real remittances.

Keywords: New Keynesian DSGE model, labor migration, remittances, Bayesian estimation.

Author’s email address: haykaz.igityan@cba.am

* The views expressed in this paper are those of the author and do not necessarily represent the views or policies of the Central Bank of Armenia.

* The author is grateful to Ashot Mkrtchyan, Vahagn Grigoryan, Narek Ghazaryan and Timo Baas for helpful comments and constructive discussions. I also would like to thank Rolan Mnatsakanyan and one anonymous referee for useful comments.
 CONTENTS

1. Introduction..4

2. The Model...8
 2.1. Armenian Economy..9
 2.2. Russian Economy..20

3. Data..31

4. Estimation..33
 4.1. Calibration..33
 4.2. Prior distributions..34
 4.3. Parameter estimates..36

5. Model Properties..39
 5.1. Generation of historical data and estimated structural shocks....................39
 5.2. Generation of Russian migration policy and real remittances data............41
 5.3. Historical simulations...43
 5.4. Historical decomposition..43
 5.5. Impulse response functions...45
 5.6. Variance decomposition..57

6. Conclusion..60

7. Appendixes ..62

8. References..111
1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a powerful tool for macroeconomic analysis. These models are derived from microeconomic foundations and usually with an ad-hoc simple monetary rule. Such models also include nominal and real frictions to capture properties of data, for example, habit in consumption, investment adjustment costs, capital utilization, stickiness of prices and wages. DSGE models are used for analyzing business cycle fluctuations and effects of monetary policy.

One of the main features of the Armenian labor market is the labor force out-migration. Migrants send a large part of their earnings to Armenia on a regular basis, which is a significant part of their families’ income. Russia is considered to be the main destination country for Armenian working migrants. The choice of Russia is associated with close mentality between Armenian and Russian peoples (post-Soviet countries), a visa-free regime, the absence of language barriers etc. Despite the above-mentioned priorities, Russian migration policy plays a significant role in migration dynamics, which is considered in this paper. When Russia tightness the migration policy against Armenian migrants, Armenian households decrease their migration to Russia and vice versa.

Most policy analysis models have an assumption about perfect labor mobility, which limits the role of mobility on macro dynamics and monetary policy. Walsh (2011) concludes that some costs are raised in a reallocation process of resources. Then he discusses many methods to solve this problem, one of which is the introduction of quadratic cost of the employment adjustment in a way suggested by Rotemberg (1983). Literature that focuses on including interstate migration in DSGE models is scarce. Literature is limited on focusing how to include migration and how to model migration costs in DSGE models. Spange and Yates (2008) construct two-country DSGE model and include migration cost in a utility function, which is a quadratic cost of the migration adjustment. Engler (2008) develops small open economy DSGE model with labor migration and includes the disutility parameter in a utility function of household, indicating his or her relative preference for
working at home rather than working abroad. Hauser (2012) discusses the same problem in a two-country DSGE set-up. Mandelman and Zlate (2008) discuss two-country DSGE model for USA and Mexico, considering the increase of migration costs with arrests at the border. Del Rosario (2010) models migration costs as a constant on migrant’s wage in a small open economy DSGE model.

The novelty of the paper is the modelling of migration costs for the small open economy with fully micro-founded external sector. On the other hand, the external sector of the discussed economy has its own external sector. This paper models migration costs as a ratio of Armenian and Russian wages, times the constant. The first part is a constraint over the decision of household members to migrant or stay in Armenia. When the above ration increases as a result of Armenian wage increase or decline of Russian wage or appreciation of Armenian dram to Russian rubble, the initiative of Armenian household members towards migration decreases. But the level of migration costs is the multiplication of the relative wages in steady state by the free constant parameter. The first component is directly calculated from data. Though, migration costs in steady state are determined by the calibration of the free parameter. The other novelty of the paper is the modelling of the migration legislation system and its inclusion in DSGE framework.

In terms of migration, Russia is the external sector for Armenia, because the direction of migration flows to Russia is estimated to 90% of the whole migration flows of Armenia. So, this paper considers Armenia as a small open economy, the external sector for which is only Russia. The Armenian economy is linked to Russian economy by trade, international risk sharing condition, interest rate parity and migration. The exchange rate of Armenian national currency in the model is the exchange rate of Armenian dram to Russian ruble. Armenian economy is very small compared to the Russian economy, which means that structural shocks of the Armenian economy do not hit the Russian economy. On the other hand, there is exogenously determined external sector for Russia. Shocks from the rest of the world impact on the Armenian economy through Russia.
The developed model is estimated by Bayesian method. Twenty two time series are used, which represent macroeconomic variables of Armenian and Russian economies. The model contains twenty two shocks to provide the stochastic singularity. Estimation gives plausible values of the structural parameters of Armenian and Russian economies. Prices in Armenia turn out to be a little bit sticky than in Russia. The average duration of wage contracts in Armenia is estimated to 4.8 quarters while in Russia it is 2.6 quarters. The posterior mean of the coefficient describing the relative disutility of working as a migrant is lower than one, which rejects the prior belief about the home bias of the Armenian households. The Frisch elasticity of labor supply of the working migrants in Russia is estimated to relatively low value, which reflects the fact that migration is more volatile along the extensive than the intensive margin. On the other side, employment in Armenia is more volatile along the intensive margin.

The estimated model is able to reproduce the dynamics of the observed variables. Moreover, without inputting the remittances data, the model generates the time series of real remittances, which is very close to HP filtered observed data. The estimated political factor of the model is linked to Russian migration legislation. Using a Kalman filter, unobservable shocks of the Armenian and Russian economies are estimated, which shows that the main stylized features of the Armenian and Russian economies are well captured by the model.

The paper then discusses the exercise to test the model’s ability to forecast the main variables of the model. As the exercise shows, the model predictions of the migration, real wages in Armenian and Russia are very close to the observed business cycle movements up to twelve quarters. The paper also analyzes the historical contribution of shocks to model variables based on the estimation of posterior means. As it turned out, the decline of migration in 2009 is mostly contributed by negative productivity shock in Armenia, positive risk premium shock in Russia and the decline of work permissions in Russia. On the other hand, the recent decrease of migration is supported by negative consumption
preference or the Smets-Wouters internal risk premium shock in Armenia, negative wage mark-up shock in Russia, positive risk premium shock in Russia and the sanctions against Armenian working migrants in Russia. Next, the paper discusses the transmission mechanisms of shocks and investigate how model variables react to different shocks. It is found out that one of the main channels through which shocks impact on migration is the real exchange rate of Armenian dram to Russian ruble.

This paper relates to several studies. Heterogeneity of labor in the utility function of Armenian household is introduced following Blundell et al (2001). Relative disutility parameter of the migrant is included in the model in a way suggested in Engler (2008) and Hauser (2012). Russian migration policy is captured in the budget constraint of Armenian households in a way discussed by Mandelman and Zlate (2008). Following Calvo (1983), prices of domestically produced goods are sticky both in Armenian and Russia. The low pass-through of the exchange rate to import prices is introduced following Monacelli (2003). Staggered wages are modeled in a way suggested by Gali (2008). Small open economy issues are discussed following Gali and Monacelli (2005). Completeness of financial assets is assumed by following Schmitt-Grohe and Uribe (2003). As the model developed in this paper is estimated by Bayesian method, it also relates to studies in this field such as An and Schorfheide (2006), Canova (2007), Smets and Wouters (2007).

There have been already developed DSGE models for Armenian economy: Stepanyan and Tevosyan (2008), Mkrtchyan et al (2009) and Barseghyan (2013). None of these studies discuss issues related to the Armenian out-migration. In addition, the current paper determines the fully micro-founded Russian economy and estimates impacts of the Russian structural shocks on the Armenian economy.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section 3 describes data used in the estimation process. Section 4 presents the results of the estimation. Section 5 discusses the main properties and abilities of the model. Section 6 concludes.
2. The Model

This paper discusses Armenian labor force migration issues. The destination country for 90% of cases is Russian Federation. So, the external world for Armenia in terms of migration is Russia, which is very big for Armenia. Each period Armenian household decides over working in the home or migrate to Russia. Migrants work in construction and service (non-tradable) sectors. A big part of their earnings they send back to home as remittances. There are two types of firms in Armenia: producers of home goods and importers, which import goods from Russia. There are discussed labor organizations in the model, which is a modeling technique to show incompleteness and wage rigidities in the labor market. Central Bank operates under inflation targeting regime. The Russian economy is divided into tradable and non-tradable sectors. There is an exogenously determined external sector for Russia. Foreign shocks hit the Armenian economy through Russia. The schematic representation of the model is captured in picture 1.

![Picture 1. Model Environment](image-url)
2.1. Armenia Economy

2.1.1. Households

Consumption basket of the Armenian representative household is expressed by the following index:

\[C_{t}^{arm} = \left(1 - \gamma_{1} \right) \frac{1}{\eta_{1}} C_{H,t}^{arm} \frac{\eta_{1} - 1}{\eta_{1}} + \gamma_{1} \eta_{1} C_{F,t}^{arm} \frac{\eta_{1} - 1}{\eta_{1}} \]

(1)

where \(C_{H,t}^{arm} \) is the consumption of home produced goods, \(C_{F,t}^{arm} \) is the consumption of imported goods from Russia, \(\gamma_{1} \) is the share of imported goods in Armenian household consumption or the degree of openness and \(\eta_{1} \) is the elasticity of substitution between these two goods. Aggregate consumption indexes of home produced (\(C_{H,t}^{arm} \)) and imported (\(C_{F,t}^{arm} \)) goods are represented by Dixit-Stiglitz constant elasticity of substitution functions:

\[C_{H,t}^{arm} = \left[\int_{0}^{1} C(j)^{arm} \frac{\epsilon_{1} - 1}{\epsilon_{1}} dj \right]^{\frac{\epsilon_{1}}{\epsilon_{1} - 1}} \]

(2)

\[C_{F,t}^{arm} = \left[\int_{0}^{1} C(j)^{arm} \frac{\epsilon_{1} - 1}{\epsilon_{1}} dj \right]^{\frac{\epsilon_{1}}{\epsilon_{1} - 1}} \]

(3)

where \(\epsilon_{1} \) is the elasticity of substitution between varieties of goods and \(j \in [0, 1] \) denotes the continuum of goods. Household tries to minimize expenditures of each type of domestic \(\int_{0}^{1} P(j)^{arm} C(j)^{arm} dj \) and foreign \(\int_{0}^{1} P(j)^{arm} C(j)^{arm} dj \) goods, where \(P(j)^{arm} \) and \(P(j)^{arm} \) are respectively prices for \(j \)-th home produced and imported goods. The optimal allocation of expenditures within each category of goods brings to the demand functions of the form:

\[C(j)^{arm} = \left(\frac{P(j)^{arm}}{P_{H,t}^{arm}} \right)^{-\epsilon_{1}} C_{H,t}^{arm} \]

(4)

\[C(j)^{arm} = \left(\frac{P(j)^{arm}}{P_{F,t}^{arm}} \right)^{-\epsilon_{1}} C_{F,t}^{arm} \]

(5)

Composite price indexes are defined as follows:

\[P_{H,t}^{arm} = \left[\int_{0}^{1} P(j)^{arm} dj \right]^{\frac{1}{1 - \epsilon_{1}}} \]

(6)
\[p_{F,t}^{\text{arm}} = \left[\int_0^1 p(j)^{\text{arm}1-\varepsilon_1} \, dj \right]^{\frac{1}{1-\varepsilon_1}} \] \hspace{1cm} (7)

Finally, households try to minimize expenditures of each type of consumption goods. The cost minimization problem is represented by:

\[\min\{p_t^{\text{arm}}c_t^{\text{arm}} - p_t^{\text{arm}}c_t^{\text{arm}1} - p_t^{\text{arm}}c_t^{\text{arm}2}\} \] \hspace{1cm} (8)

where \(p_t^{\text{arm}} \) is the consumer price index in Armenia. Solution of the above optimization problem gives demand functions for these two types of goods:

\[c_t^{\text{arm}} = (1 - \gamma_1) \left(\frac{p_t}{p_t^{\text{arm}}} \right)^{-\eta_1}c_t^{\text{arm}} \] \hspace{1cm} (9)

\[c_t^{\text{arm}2} = \gamma_1 \left(\frac{p_t^{\text{arm}2}}{p_t^{\text{arm}}} \right)^{-\eta_1}c_t^{\text{arm}} \] \hspace{1cm} (10)

After permutation (9) and (10) in (8), consumer price index gets the form:

\[p_t^{\text{arm}} = \left[(1 - \gamma_1)p_t^{\text{arm}(1-\eta_1)} + \gamma_1p_t^{\text{arm}(1-\eta_1)} \right]^{\frac{1}{1-\eta_1}} \] \hspace{1cm} (11)

A typical household in the home country every period decides over working in Armenia \((N_t^{\text{arm}})\) or becomes a migrant \((N_t^{\text{m}})\) and works in Russian non-tradable sector. Thus, the utility function gets the following form:

\[U_{t+j} = \sum_{j=0}^{\infty} \beta^j \left(\log(c_{t+j}^{\text{arm}}) - \chi_{\text{arm}} \frac{N_{t+j}^{\text{arm}(1+\varphi_{\text{arm}})}}{1 + \varphi_{\text{arm}}} - \chi_{\text{m}} \frac{N_{t+j}^{\text{m}(1+\varphi_{\text{m}})}}{1 + \varphi_{\text{m}}} \right) \] \hspace{1cm} (12)

where \(E_t \) denotes the expectation operator conditional on information available at time \(t \), \(\beta \) is the discount rate, \(\varphi_{\text{arm}} \) is the inverse of the Frisch elasticity of labor supply for employed in Armenia and \(\varphi_{\text{m}} \) is the same coefficient for migrant, \(\frac{\chi_{\text{m}}}{\chi_{\text{arm}}} \) represents the relative preference working as a migrant over staying in the home country. \(\chi_{\text{arm}} \) is calibrated to 1 and the issue comes to the estimating the coefficient \(\chi_{\text{m}} \). Actually, \(\chi_{\text{m}} \) could be bigger or less than one. In a first case, the household member has a relative preference to stay and work in Armenia. In the second one, he or she prefers to migrate and work in Russia.
According to a lot of surveys among Armenian households, which includes also the report of UN mission in Armenia (2014), two most significant factors, affecting working migration, are economic and political. The first includes an economic situation in both countries and the second one represents legislation system of destination country towards working migrants. Two these factors are taken into account during a construction of this model. The basic New Keynesian framework, that is the heart of most DSGE policy models, has assumptions about the ability of labor to move among alternative uses extremely. In a migration process, costs arise because resources are not fully mobile. The maximization of utility function is subject to the sequence of intertemporal budget constraints of the form:

\[
C_t^{\text{arm}} + \frac{B_t^{\text{arm}}}{p_t^{\text{arm}}} + \frac{E_t^{\text{arm}}}{p_t^{\text{arm}}} B_t^{\text{rus}} + \text{COST}_t \text{POLITICS}_t N_t^{m} = \frac{W_t^{\text{arm}}}{p_t^{\text{arm}}} N_t^{\text{arm}} + \\
+ (1 - \tau) \frac{E_t^{\text{arm}}}{p_t^{\text{arm}}} W_t^{\text{rus}} N_t^{m} + \frac{R_{t-1}^{\text{arm}} B_{t-1}^{\text{arm}}}{p_t^{\text{arm}}} + \frac{E_t^{\text{arm}}}{p_t^{\text{arm}}} R_{t-1}^{\text{rus}} B_{t-1}^{\text{rus}} \epsilon_{\text{prem},t-1} + \text{Div}_t \tag{13}
\]

The left-hand side of the budget constraint presents expenditures, written in real terms, and the right one represents incomes of households. Every period household decides about purchasing home \((B_t^{\text{arm}})\) and Russian \((B_t^{\text{rus}})\) bonds. He or she also gets incomes from previously purchased bonds. \(R_{t-1}^{\text{arm}}\) and \(R_{t-1}^{\text{rus}}\) are respectively gross interest rates on Armenian and Russian bonds from the previous period, \(\epsilon_{\text{prem},t}^{\text{arm}}\) is a country-specific risk premium. \(E_t^{\text{arm}}\) is the nominal exchange rate of Armenian dram to Russian ruble (increase means depreciation of national currency), \(W_t^{\text{arm}}\) is the nominal wage in home country, \(W_t^{\text{rus}}\) is the nominal wage in Russia expressed in ruble, \(\tau\) is a share of income that migrants spend in destination country, \(\text{Div}_t\) are dividends of firms, which are owned by households. The fourth piece of expenditures side of budget constraint includes costs associated with migration and policy factor. Costs are expressed by:

\[
\text{COST}_t = \sigma \frac{W_t^{\text{arm}}}{E_t^{\text{arm}} W_t^{\text{rus}}} \tag{14}
\]

The ratio of wages is a constraint over a decision of household to migrate. When the relative wage in the home country increases, household member prefers to stay and
work in Armenia. When the relative wage in Armenia decreases as a result of the decline of Armenian wages or the increase of Russian wages or the depreciation of Armenian dram to Russian ruble, the initiative of the household member towards migration is decreased. The level of the migration costs is the coefficient σ times the relative wages in steady state $W_{ss}^{ARM}/(W_{ss}^{RUS} \times E_{ss}^{ARM})$. Similar to the process of calibrations of steady state parameters in DSGE literature, this paper sets the ratio of relative wages in steady state to the historical mean of the observed samples. So, $W_{ss}^{ARM}/(W_{ss}^{RUS} \times E_{ss}^{ARM})$ is directly calculated from data. Actually, coefficient σ becomes the main determinant of the calibration of migration costs level. Political factor is modeled as the first order autoregressive process.

The household’s utility maximization problem gives the following first order conditions:

\[
\frac{1}{C_t^{arm}} - \lambda_t = 0
\]

\[
- \frac{\partial U_{t+j}}{\partial N_t^{arm}} / \frac{\partial U_{t+j}}{\partial C_t^{arm}} = MRS_t^{arm}
\]

\[
\frac{\lambda_{t+1} R_t^{arm} p_{t+1}}{p_t^{arm}} - \frac{\lambda_t}{p_t^{arm}} = 0
\]

\[
\frac{\lambda_{t+1} E_t^{arm} p_{t+1}}{p_t^{arm}} - \frac{\lambda_t E_t^{arm}}{p_t^{arm}} = 0
\]

\[
\frac{\lambda_t (1 - \tau) E_t^{arm} W_t^{Rus} p_t^{arm}}{p_t^{arm}} - \chi_m N_t^{arm} \nu_m - \lambda_t COST_t POLICIES_t = 0
\]

where λ_t is a Lagrange multiplier. Using (16), the intratemporal optimality condition is calculated, which shows the equalization of marginal utility of consumption to the marginal value of labor:

\[
MRS_t^{arm} = C_t^{arm} \chi_{arm} N_t^{arm} \nu_{arm}
\]

Equation (21) is the consumption Euler equation representing the trade-off to the economy of moving consumption across time. It is derived by substituting (15) to (17) and from the condition that $\lambda_{t+1} = \frac{\beta}{c_{t+1}}$.

12
\[
\beta R_t^{arm} E_t \left(\frac{C_t^{arm} p_t^{arm}}{C_{t+1}^{arm} p_{t+1}^{arm}} \right) = 1
\]
(21)

Combination of (17) and (18) gives the uncovered interest rate parity, which implies that under the assumption of complete financial markets the expected nominal return in national currency from domestic and foreign bonds must be the same:

\[
R_t^{arm} = E_t \left(\frac{E_{t+1}^{arm}}{E_t^{arm}} \right) R_t^{rus} e_{prem,t}^{arm}
\]
(22)

where \(E_t \) is the expectation operator.

Using (15), (16) and (19), making some rearrangements, using some definitions and log-linearizing around deterministic steady state, migration decision equation gets the following form (small letters represent percentage deviations of variables from their steady state levels and coefficients with 'SS' subscript denote values of those variables in steady state):

\[
n_t^m = - \frac{1}{\chi_m \varphi_m} \left(1 + \frac{COST^{SS}}{C^{SS}} \right) cost_t - \frac{\varphi_{arm}}{\varphi_m} n_t^{arm} - \frac{COST^{SS POLITICS^{SS}}}{\chi_m C^{SS}} politics_t
\]
(23)

Migration is a decreasing function of costs associated with migration and employment in Armenia and increasing with favorable migration legislation policy of Russian Federation. Real remittances (\(tr_t \)), which are the second component in the income part of the household budget constraint (see 13), in a log-linearized form are written as:

\[
tr_t = n_t^m + w_{r_t}^{rus} + q_t^{arm}
\]
(24)

Real money transfers of working migrants from Russia depend on migration, real Russian wages and real exchange rate of Armenian dram (the increase of \(q_t^{arm} \) means real depreciation of Armenian dram to Russian ruble).

2.1.2. CPI inflation, law of one price gap, real exchange rate and terms of trade

Log-linearization of aggregate price index (11) around steady state yields:

\[
p_t^{arm} = (1 - \gamma_1) p_{H_t}^{arm} + \gamma_1 p_{F,t}^{arm}
\]
(25)
Substituting p_{t-1}^{arm} from both sides of the above equation, one gets the inflation equation as a function of home produced and imported good inflations:

$$\pi_t^{arm} = (1 - \gamma_1)\pi_{H,t}^{arm} + \gamma_1\pi_{F,t}^{arm} \quad (26)$$

Important relationship is the terms of trade of the domestic economy, which measures the competitiveness of the economy and it is expressed as the ratio of home produced good’s price to import price expressed in domestic currency:

$$S_t^{arm} = \frac{p_{H,t}^{arm}}{p_{F,t}^{arm}} \quad (27)$$

In a log-linearized form, terms of trade are written as:

$$s_t^{arm} = p_{H,t}^{arm} - p_{F,t}^{arm} \quad (28)$$

Law of one price (LOP) gap means that the law of one price fails to hold. It is given by the ratio of the foreign price index in terms of domestic currency to the domestic currency price of import. Because this paper discusses Russia to be the external sector for Armenia, LOP gap is expressed by the following expression:

$$\psi_t^{arm} = \frac{P_t^{arm}P_t^{rus}}{P_{F,t}^{arm}} \quad (29)$$

The real exchange rate is given as the ratio of price index of Russia in terms of domestic currency to the domestic price index:

$$Q_t^{arm} = \frac{P_t^{arm}P_t^{rus}}{P_t^{arm}} \quad (30)$$

Log-linearization of the above LOP gap equation around steady state gives:

$$\psi_t^{arm} = e_t^{arm} + p_t^{rus} - p_{F,t}^{arm} \quad (31)$$

Making some rearrangements and after log-linearization, real exchange rate equation would be expressed by the following:

$$q_t^{arm} = \psi_t^{arm} - (1 - \gamma_1)s_t^{arm} \quad (32)$$

Equation (32) shows that real exchange rate is positively related to the LOP gap. The effect of terms of trade on real exchange rate is negative.
2.1.3. International risk sharing

Under the assumption of complete financial markets, first order condition is expressed as an Euler equation must hold also for any other country. This paper implies that it is true for Russia the following condition (derivation is shown in part 2.2.1):

$$\beta R^r_{t} E_t \left(\frac{C^r_{t}}{C^r_{t+1}} \frac{P^r_{t}}{P^r_{t+1}} \right) = 1$$

(33)

Combining expression (33) with (21) and using the definition of real exchange rate, one gets:

$$C^arm_t = \omega C^rus_t Q^arm_t$$

(34)

for all t, where ω is a constant depending on initial conditions. Using Euler equation with (34) and log-linearizing it around steady state, the consumption equation gets the form:

$$c^arm_t = c^rus_{t+1} + q^arm_t - (r^arm_t - \pi^arm_t)$$

(35)

Equation (35) shows that consumption is an increasing function with higher expectation of foreign consumption and real exchange rate depreciation expectations. Consumption is decreasing with real interest rate:

2.1.4. Labor market

Households supply differentiated labor $(N(i)^arm_t)$ to labor organizations which they combine to homogeneous labor and supply to firms according to the following Dixit-Stiglitz constant elasticity of substitution function:

$$N^arm_t = \left[\int_0^1 N(i)^arm_t^{1-\frac{1}{\varepsilon^arm}} di \right]^{\frac{\varepsilon^arm}{\varepsilon^arm-1}}$$

(36)

where ε^arm is the elasticity of substitution between varieties of supplied labor. Labor organization represents household and it is introduced in this model in a way suggested by Gali (2008) to express incompleteness in the labor market and wage stickiness. Labor organization tries to minimize expenditures associated with purchasing each type of labor:

$$\min \{W^arm_t N^arm_t - \bar{W} (i)^arm_t N(i)^arm_t \}$$

(37)
Because labor is differentiated, the wage for the \(i \)-th type of labor is \(W(i)_t^{arm} \) and households or labor organizations representing them have the power to set wages, which is given for firms. From labor organizations optimization problem demand for \(i \)-th type of labor is represented by the following equation:

\[
N(i)_t^{arm} = \left(\frac{W(i)_t^{arm}}{\bar{W}_t^{arm}} \right)^{-\epsilon_{w}^{arm}} N_t^{arm} \tag{38}
\]

Permutation of demand equation to the (37) gives the aggregate wage index:

\[
W_t^{arm} = \left[\frac{1}{\int_0^1 W(i)_t^{1-\epsilon_{w}^{arm}} di} \right] \frac{1}{1-\epsilon_{w}^{arm}} \tag{39}
\]

According to Calvo (1983), it is assumed that only \((1 - \theta_{w}^{arm})\) fraction of households every period can negotiate about wages. So, \(\theta_{w}^{arm}\) is called the wage stickiness coefficient. Households set \(W_t^{\ast arm}\) optimal wage in a way that they cannot change it in the future. In a symmetric equilibrium, the optimization condition associated with that problem is expressed by the following:

\[
\sum_{j=0}^{\infty} (\beta\theta_{w}^{arm})^j E_t \left[\Lambda_{t,t+j}^{arm} \left(\frac{W_t^{\ast arm}}{p_{t+j}^{arm}} - M_w^{arm} MRS_{t+j}^{arm} \right) N_{t+j}^{arm} \right] = 0 \tag{40}
\]

where \(\beta^j \Lambda_{t,t+j}^{arm} = \beta^j \left(\frac{c_t}{c_{t+j}} \right)^{-1} \frac{p_t}{p_{t+j}}\) is the stochastic discount factor and \(M_w^{arm} = \frac{\epsilon_{w}^{arm}}{\epsilon_{w}^{arm} - 1}\) is a markup over wages in competitive market. Log-linearization of the above condition brings to the following optimal wage setting rule:

\[
w_t^{\ast arm} = \mu_w^{arm} + (1 - \beta\theta_{w}^{arm}) \sum_{j=0}^{\infty} (\beta\theta_{w}^{arm})^j E_t [mrs_{t+j}^{arm} + p_{t+j}^{arm}] \tag{41}
\]

where \(\mu_w^{arm} = \log(M_w^{arm})\). Under the assumptions that every period only \(\theta_{w}^{arm}\) part of households can negotiate about their wages, aggregate wage index is defined:

\[
W_t^{arm} = (\theta_{w}^{arm}(W_{t-1}^{arm})^{1-\epsilon_{w}^{arm}} + [1 - \theta_{w}^{arm}] (W_t^{\ast arm})^{1-\epsilon_{w}^{arm}})^{1-\epsilon_{w}^{arm}} \tag{42}
\]

Defining wage inflation by \(\pi_{w,t}^{arm}\), replacing \(w_t^{\ast arm}\) in (41) by (42) and using some manipulation techniques, the New Keynesian Phillips curve for wage inflation gets the form:
\[\pi^{\text{arm}}_{W,t} = \beta \pi^{\text{arm}}_{W,t+1} + \lambda^{\text{arm}}_W [mr^{\text{arm}}_t - (w^{\text{arm}}_t - p^{\text{arm}}_t)] \]

(43)

where \(\lambda^{\text{arm}}_W = \frac{(1-\theta^{\text{arm}})(1-\beta\theta^{\text{arm}})}{\theta^{\text{arm}}(1+\epsilon^{\text{arm}}\varphi^{\text{arm}})} \). This equation shows that when real wage is below the desired level, households increase it by pressing the wage inflation to go up. On the other hand, taking the identity that \(\pi^{\text{arm}}_{W,t} = w^{\text{arm}}_t - w^{\text{arm}}_{t-1} \), real wage is defined by the following equation:

\[w^{\text{arm}}_{r,t} = w^{\text{arm}}_{r,t-1} + \pi^{\text{arm}}_{W,t} - \pi^{\text{arm}}_t \]

(44)

2.1.5. Production

Firms produce homogeneous good. Aggregate output in the economy is represented by production function of the form:

\[Y^{\text{arm}}_t = A^{\text{arm}}_t (N^{\text{arm}}_t)^{(1-\alpha)} \]

(45)

where \((1 - \alpha) \) is the share of labor in total recourses used in production process. This paper abstracts from the capital and considers it as a constant. \(A^{\text{arm}}_t \) is a technology, which is common to all firms and each of them has access to it. The last follows the first order autoregressive process. Firms minimize their expenditures associated with production of goods, expressed by the following function:

\[\min \left\{ \frac{W^{\text{arm}}_t N^{\text{arm}}_t}{P^{\text{arm}}_t H^{\text{arm}}_t} \right\} \]

(46)

Solution of the firm’s optimization problem gives the function of marginal cost:

\[MC^{\text{arm}}_t = \frac{W^{\text{arm}}_t (Y^{\text{arm}}_t)^{\alpha}}{(1 - \alpha) P^{\text{arm}}_t (A^{\text{arm}}_t)^{1-\alpha}} \]

(47)

Log-linearization around deterministic steady state brings to the following:

\[mc^{\text{arm}}_t = w^{\text{arm}}_{r,t} - \gamma_1 s^{\text{arm}}_t + \alpha_1 n^{\text{arm}}_t - a^{\text{arm}}_t \]

(48)

The above equation shows that marginal cost is the increasing function with real wage and employment growth and decreasing function with respect to terms of trade and total productivity in the economy.
2.1.6. Price setting

There are a lot of firms operating in monopolistic competitive market. They have a monopolistic power and set prices following Calvo (1983). In each period, a firm with probability \((1 - \theta_H^{arm})\) receives a signal to adjust prices and with probability \(\theta_H^{arm}\) does not receive the signal for price optimization. The optimal price chosen by the \(j\)-th firm is denoted by \(P(j)_t^{arm}\). A typical firm maximizes its profit function:

\[
\sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j E_t \left[\Lambda_{t,t+j}^{arm} \left(\frac{P(j)_{H,t}^{arm}}{p_{arm}^{H,t+j}} - M_{c,t+j}^{arm} \right) Y(j)^{arm}_{H,t+j} \right]
\]

(49)

subject to the demand curve for its production:

\[
Y(j)^{arm}_{H,t+j} = \left(\frac{P(j)_{H,t}^{arm}}{p_{arm}^{H,t+j}} \right)^{-\varepsilon_1} Y_{H,t+j}^{arm}
\]

(50)

The optimization condition of the above discussed problem is expressed as:

\[
E_t \sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j \Lambda_{t,t+j}^{arm} \frac{P(j)^{arm}_{H,t}}{p_{arm}^{H,t+j}} Y(j)^{arm}_{H,t+j} = E_t \sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j \Lambda_{t,t+j}^{arm} (1 + \mu_1) M_{c,t+j}^{arm} Y(j)^{arm}_{H,t+j}
\]

(51)

where \(\mu_1 = \frac{1}{\varepsilon_1 - 1}\) is a mark-up over prices. In a symmetric equilibrium for any \(j\)-th firm \(P(j)^{arm}_{H,t} = P^{arm}_{H,t}\) and \(Y(j)^{arm}_{H,t+j} = Y^{arm}_{H,t+j}\), which brings to the following:

\[
E_t \sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j \Lambda_{t,t+j}^{arm} \frac{P^{arm}_{H,t}}{p_{arm}^{H,t+j}} Y^{arm}_{H,t+j} = E_t \sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j \Lambda_{t,t+j}^{arm} (1 + \mu_1) M_{c,t+j}^{arm} Y^{arm}_{H,t+j}
\]

(52)

where \(\pi_{arm}^{H,t,j+1} = \pi_{arm}^{H,t+1} \times \pi_{arm}^{H,t+2} \times \pi_{arm}^{H,t+3} \times \cdots \times \pi_{arm}^{H,t+j}\). Optimal price ratio is denoted by \(p^{arm}_{H,t} = \frac{p^{arm}_{H,t}}{\pi_{H,t}}\). Log-linearization of the optimality condition and some algebraic manipulations with it gives the following price setting curve:

\[
p^{arm}_{H,t} = (1 - \beta \theta_H^{arm}) E_t \sum_{j=0}^{\infty} (\beta \theta_H^{arm})^j (m_{c,t+j}^{arm} + \pi_{arm}^{H,t+j})
\]

(53)

Using some techniques, the above equation gets the following form:
\[p^{\ast}_{H,t} = (1 - \beta \theta_{H}^{\text{arm}})mc_{t}^{\text{arm}} + \beta \theta_{H}^{\text{arm}}E_{t}(p^{\ast}_{H,t+1} + \pi_{H,t+1}^{\text{arm}}) \]

(54)

Aggregate price index of the home produced goods (equation 6) is written as:

\[p_{H,t}^{\text{arm}} = \left[\int_{0}^{1} P(j)^{\text{arm}} \frac{1}{\pi_{t}} dj \right]^{-\mu_{1}} = \left[\theta_{H}^{\text{arm}}(p_{H,t-1}^{\text{arm}})^{-\frac{1}{\mu_{1}}} + (1 - \theta_{H}^{\text{arm}})(p^{\ast}_{H,t} + \pi_{H,t}^{\text{arm}})^{-1} \right]^{\mu_{1}} \]

(55)

Log-linearization of (55) around a steady state and after some algebraic manipulations, optimal price ratio gets the form:

\[p^{\ast}_{H,t} = \frac{\theta_{H}^{\text{arm}}}{1 - \theta_{H}^{\text{arm}} \pi_{H,t}^{\text{arm}}} \]

(56)

This equation is true for every \(t \). Substituting (56) to (54), the (54) expression gets the form, which is called New Keynesian Phillips curve:

\[\pi_{H,t}^{\text{arm}} = \beta \pi_{H,t+1}^{\text{arm}} + \lambda_{H}^{\text{arm}}mc_{t}^{\text{arm}} \]

(57)

where \(\lambda_{H}^{\text{arm}} = \frac{(1 - \beta \theta_{H}^{\text{arm}})(1 - \theta_{H}^{\text{arm}})}{\theta_{H}^{\text{arm}}} \). As the above equation shows, inflation is a function of marginal cost and expected inflation.

Importers are also operating in the monopolistic competitive market. They set prices following Calvo (1983). With probability \((1 - \theta_{F}^{\text{arm}}) \) firms set optimal price and with a probability of \(\theta_{F}^{\text{arm}} \) they keep prices unchanged. The \(j \)-th importer solves the following profit maximization problem:

\[\sum_{j=0}^{\infty} (\beta \theta_{F}^{\text{arm}})^{j} E_{t}\left[\Lambda_{H,t+1}^{\text{arm}} \left(P(j)^{\ast}_{F,t} \frac{p_{F,t}^{\text{arm}}}{p_{F,t}^{\text{arm}} - E_{t}^{\text{arm}}p_{t}^{\text{rus}}} \right) Y(j)^{\text{arm}}_{F,t+1} \right] \]

(58)

subject to the demand curve for its good:

\[Y(j)^{\text{arm}}_{F,t+1} = \left(\frac{P(j)^{\ast}_{F,t} p_{F,t}^{\text{arm}}}{p_{F,t+1}^{\text{arm}}} \right)^{-\epsilon_{1}} Y_{F,t+1}^{\text{arm}} \]

(59)

Steps of the optimization problem and the derivation of New Keynesian Phillips curve are the same as in a case of home produced goods. The exception is that the real marginal cost for importers is LOP gap \(e_{t}^{\text{arm}}p_{F,t}^{\text{arm}} \). The New Keynesian Phillips curve of the imported goods from Russia has the following form:

\[\pi_{F,t}^{\text{arm}} = \beta \pi_{F,t+1}^{\text{arm}} + \lambda_{F}^{\text{arm}} \psi_{t}^{\text{arm}} \]

(60)
where inflation of imported goods is a positive function of inflation expectations and the law of one price gap.

2.1.7. Equilibrium

Value added in the economy is divided into the consumption of home-produced goods and migration costs. It is represented by the following equation:

\[Y_{t,arm} = C_{H,t}^{arm} + cost_t N_t^m \]

(61)

Log-linearization of the above expression around steady state and after simple manipulations, the market clearing condition gets the form:

\[y_{t,arm} = (1 - \gamma_1)C_{ss,arm} (c_{t,arm} - \eta_1 Y_{t,arm}) + COST_{ss} N_{ss_M} (cost_t + n_{M,t}) \]

(62)

2.1.8. Monetary policy

Central bank operates through Taylor (1993) type interest rate rule. Interest rate responses to movements of inflation expectation from its target and the expected deviation of output from its non-inflation driving level. It is given by the following:

\[R_{t,arm} = (R_{t-1})^{\rho_{t,arm}} \left\{ \left(\frac{\pi_{t+1}^{arm}}{\pi_{ss,arm}} \right)^{\mu_{\pi,arm}} \left(\frac{Y_{t,arm}}{Y_{ss,arm}} \right)^{\mu_{y,arm}} \right\}^{(1-\rho_{t,arm})} \]

(63)

where \(\rho_{t,arm} \) is an interest rate persistence coefficient, \(\mu_{\pi,arm} \) and \(\mu_{y,arm} \) are coefficients of responses of interest rate to deviations of inflation expectation and output gap from their targets respectively. The log-linearized version of monetary policy rule is expressed:

\[r_{t,arm} = \rho_{r,arm} r_{t-1,arm} + (1 - \rho_{r,arm}) (\mu_{\pi,arm} \pi_{t+1}^{arm} + \mu_{y,arm} y_{t+1}^{arm}) \]

(64)
2.2. Russian Economy

2.2.1. Households

Consumption basket of the representative Russian household consists of tradable and non-tradable goods. The consumption index is represented by the following constant elasticity of substitution function:

\[
C^{rus}_t = \left(1 - \gamma_2 \right)^{\frac{1}{\eta_2}} C^{rus}_{T,t}^{\eta_2} + \gamma_2 \eta_2 C^{rus}_{NT,t}^{\eta_2 - 1} \eta_2^{\eta_2 - 1} \eta_2^{-1} \right]^{\eta_2} (65)
\]

where \(C^{rus}_{T,t} \) and \(C^{rus}_{NT,t} \) are respectively consumptions of tradable and non-tradable goods, \(\gamma_2 \) is a share of non-tradable goods in household's consumption, \(\eta_2 \) is the elasticity of substitution between these two types of goods. Aggregate consumption index of non-tradable good is expressed by Dixit-Stiglitz function:

\[
C^{rus}_{NT,t} = \left[\int_0^1 C(j)^{rus}_{NT,t}^{\eta_2 - 1} \eta_2 d j \right]^{\frac{\eta_2}{\eta_2 - 1}} (66)
\]

where \(\eta_2 \) is the elasticity of substitution between varieties of goods and \(j \in [0, 1] \) denotes the continuum of goods. Household tries to minimize expenditures of each type of non-tradable goods \(\int_0^1 P(j)^{rus}_{NT,t} C(j)^{rus}_{NT,t} d j \), where \(P(j)^{rus}_{NT,t} \) is the price of \(j \)-th type of non-tradable good. From expenditures optimization problem, one gets the demand function of the \(j \)-th type of good:

\[
C(j)^{rus}_{NT,t} = \left(\frac{P(j)^{rus}_{NT,t}}{P^{rus}_{NT,t}} \right)^{-\delta_2} C^{rus}_{NT,t} (67)
\]

Aggregate price index of non-tradable goods is derived by substituting (67) into expenditures minimization function. The price index gets the form:

\[
P^{rus}_{NT,t} = \left[\int_0^1 P(j)^{rus}_{NT,t}^{1 - \delta_2} d j \right]^{\frac{1}{1 - \delta_2}} (68)
\]

Household tries to minimize expenditures of two types of goods by solving the minimization problem of the form:

\[
\min\{P_t^{rus} C_t^{rus} - P_{T,t}^{rus} C_{T,t}^{rus} - P_{NT,t}^{rus} C_{NT,t}^{rus}\} (69)
\]
where P^r_{tus} is a consumer price index, $P^r_{T,t}$ and $P^r_{NT,t}$ are respectively prices of tradable and non-tradable goods. A solution of the above problem gives demand functions for tradable and non-tradable goods.

\[
C^r_{T,t} = (1 - \gamma_2) \left(\frac{P^r_{T,t}}{P^r_{tus}} \right)^{-\eta_2} C^r_{tus} \tag{70}
\]

\[
C^r_{NT,t} = \gamma_2 \left(\frac{P^r_{NT,t}}{P^r_{tus}} \right)^{-\eta_2} C^r_{tus} \tag{71}
\]

After permutation of (70) and (71) into (69), one gets the consumer price index of the form:

\[
P^r_{tus} = \left[(1 - \gamma_2)P^r_{T,t}(1-\eta_2) + \gamma_2 P^r_{NT,t}(1-\eta_2) \right]^{1/(1-\eta_2)} \tag{72}
\]

Consumption of tradable goods consists of home produced and imported goods, which is represented by the following index:

\[
C^r_{T,t} = \left[(1 - \gamma_3)\frac{1}{\eta_3}C^r_{H,t} \frac{\eta_3-1}{\eta_3} + \frac{1}{\eta_3} \gamma_3 C^r_{F,t} \frac{\eta_3-1}{\eta_3} \right]^{\eta_3-1} \tag{73}
\]

where $C^r_{H,t}$ and $C^r_{F,t}$ are respectively consumptions of home produced and imported goods, γ_3 is a share of imported goods in overall consumption of tradable goods, η_3 is the elasticity of substitution between imported and home produced tradable goods. On the other hand, consumption indexes of home produced ($C^r_{H,t}$) and imported ($C^r_{F,t}$) goods are given by the following constant elasticity of substitution functions:

\[
C^r_{H,t} = \left[\int_0^1 C(j)^{r_{H,t}} \frac{\eta_3-1}{\eta_3} \frac{\eta_3-1}{\eta_3} \frac{\eta_3}{d} \right]^{\frac{\eta_3}{d-1}} \tag{74}
\]

\[
C^r_{F,t} = \left[\int_0^1 C(j)^{r_{F,t}} \frac{\eta_3-1}{\eta_3} \frac{\eta_3-1}{\eta_3} \frac{\eta_3}{d} \right]^{\frac{\eta_3}{d-1}} \tag{75}
\]

The optimal allocation of resources within each category of goods gives demand functions of the form:

\[
C(j)^{r_{H,t}} = \left(\frac{P(j)^{r_{H,t}}}{P^{r_{H,t}}_{H,t}} \right)^{-\epsilon_2} \tag{76}
\]
\[C(j)_{F,t}^{rus} = \left(\frac{P(j)_{F,t}^{rus}}{P_{F,t}^{rus}} \right)^{-\varepsilon_2} C_{F,t}^{rus} \]
(77)

Aggregate price indexes of home produced and imported tradable goods are represented by followings:

\[P_{H,t}^{rus} = \left[\int_0^1 P(j)_{H,t}^{rus1-\varepsilon_2} \, dj \right]^{1-\varepsilon_2} \]
(78)

\[P_{F,t}^{rus} = \left[\int_0^1 P(j)_{F,t}^{rus1-\varepsilon_2} \, dj \right]^{1-\varepsilon_2} \]
(79)

Household minimizes expenditures of the above mentioned goods:

\[\min\{P_{T,t}^{rus} C_{T,t}^{rus} - P_{H,t}^{rus} C_{H,t}^{rus} - P_{F,t}^{rus} C_{F,t}^{rus} \} \]
(80)

Demand functions for home produced tradable and imported goods are derived from optimization problem. They get the following forms:

\[C_{H,t}^{rus} = (1 - \gamma_3)(1 - \gamma_2) \left(\frac{P_{H,t}^{rus}}{P_{T,t}^{rus}} \right)^{-\eta_3} \left(\frac{P_{T,t}^{rus}}{P_{F,t}^{rus}} \right)^{-\eta_2} C_{T,t}^{rus} \]
(81)

\[C_{F,t}^{rus} = \gamma_3(1 - \gamma_2) \left(\frac{P_{F,t}^{rus}}{P_{T,t}^{rus}} \right)^{-\eta_3} \left(\frac{P_{T,t}^{rus}}{P_{F,t}^{rus}} \right)^{-\eta_2} C_{T,t}^{rus} \]
(82)

So, price index of tradable goods gets the form:

\[P_{T,t}^{rus} = \left[(1 - \gamma_3) P_{H,t}^{rus(1-\eta_3)} + \gamma_3 P_{F,t}^{rus(1-\eta_3)} \right]^{1-\eta_3} \]
(83)

A typical Russian household maximizes the following utility function:

\[U_{t+j} = E_t \sum_{j=0}^{\infty} \beta^j \left(\log(C_{t+j}^{rus}) - \chi_{rus} \frac{N_{t+j}^{rus1+\varphi_{rus}}}{1 + \varphi_{rus}} \right) \]
(84)

where \(E_t \) denotes the expectation operator conditional on information available at time \(t \), \(\beta \) is the discount rate, \(\varphi_{rus} \) is the inverse of the Frisch elasticity of labor supply, \(\chi_{rus} \) is a preference parameter. \(N_{t}^{rus} \) is a supplied labor and it is expressed as a function of employed in tradable (\(N_{T,t}^{rus} \)) and non-tradable (\(N_{NT,t}^{rus} \)) sectors:

\[N_{t}^{rus} = \left[(1 - \gamma_4) \frac{1}{\eta_4} N_{T,t}^{rus}^{\eta_4-1} + \gamma_4 \frac{1}{\eta_4} N_{NT,t}^{rus}^{\eta_4-1} \right]^{\eta_4^{-1}} \]
(85)
where γ_4 is a share of employed in the non-tradable sector and η_4 is the elasticity of substitution between two types of labors. This paper assumes the perfect mobility of the labor across sectors. To provide this condition, the elasticity of substitution between two types of labor must go to infinity ($\eta_4 \to \infty$).

The maximization of the utility function is subject to the sequence of budget constraints of the form:

$$C_t^{rus} + \frac{B_t^{rus}}{p_t^{rus}} + \frac{E_t^{rus} B_t^*}{p_t^{rus}} = W_t^{rus} N_t^{rus} + \frac{R_t^{rus} B_{t-1}^{rus}}{p_t^{rus}} + \frac{E_t^{rus} R_{t-1}^{rus} B_{t-1}^{*} \varepsilon_{t}^{rus} \varepsilon_{prem,t-1}}{p_t^{rus}} + \text{Div}_t$$ \hspace{1cm} (86)

Every period household buys B_t^{rus} internal and B_t^* external bonds and gets $R_t^{rus} B_{t-1}^{rus}$ and $E_t^{rus} R_{t-1}^{rus} B_{t-1}^{*}$ payments from previously purchased bonds, where R_t^{rus} and R_t^* are gross interest rates of internal and external bonds respectively, E_t^{rus} is the nominal effective exchange rate of ruble, W_t^{rus} is a nominal wage in the economy and ε_{t}^{rus} is a country-specific risk premium. Households are owners of firms and get dividends (Div_t).

First order conditions of the Russian household’s utility maximization problem are the followings:

$$\frac{1}{C_t^{rus}} - \lambda_t = 0$$ \hspace{1cm} (87)

$$\left(\frac{\partial U_{t+j}}{\partial N_t^{rus}}\right) \left(\frac{\partial U_{t+j}}{\partial C_t^{rus}}\right) = \text{MRS}_t^{rus}$$ \hspace{1cm} (88)

$$\frac{\lambda_{t+1} R_t^{rus}}{p_{t+1}^{rus}} - \frac{\lambda_t}{p_t^{rus}} = 0$$ \hspace{1cm} (89)

$$\frac{\lambda_{t+1} E_t^{rus} R_{t+1}^{*} \varepsilon_{prem,t}^{rus}}{p_{t+1}^{rus}} - \frac{\lambda_t E_t^{rus}}{p_t^{rus}} = 0$$ \hspace{1cm} (90)

The condition (88) gives the equation of marginal rate of substitution between consumption and leisure:

$$\text{MRS}_t^{rus} = C_t^{rus} \chi_{rus} N_t^{rus} \varphi_{rus}$$ \hspace{1cm} (91)

Substituting λ_t by $\frac{1}{C_t^{rus}}$ in equation (89) and from the condition that $\lambda_{t+1} = \frac{\beta}{c_{t+1}^{prem}}$, the intertemporal consumption equation is:
\[\beta R_t^{rus} E_t \left(\frac{c_t^{rus} p_t^{rus}}{c_{t+1}^{rus} p_{t+1}^{rus}} \right) = 1 \] (92)

Uncovered interest rate parity equation is derived by combining (89) and (90) conditions. The UIP gets the form:

\[R_t^{rus} = \frac{E_t^{rus}}{E_t^{rus}} R_t e_{prem,t}^{rus} \] (93)

It shows that differences in interest rates are a result of expected change of nominal exchange rate and country specific risk premium.

2.2.2. Law of one price gap, real exchange rate and terms of trade

Log-linearization of (72) and (83) around steady state brings to the set of following equations:

\[p_t^{rus} = (1 - \gamma_2)p_{T,t}^{rus} + \gamma_2 p_{NT,t}^{rus} \] (94)

\[p_{T,t}^{rus} = (1 - \gamma_3)p_{H,t}^{rus} + \gamma_3 p_{F,t}^{rus} \] (95)

Substituting \(p_{t-1}^{rus} \) from (94), one gets the inflation of consumer price index as a function of tradable and non-tradable goods inflations. And substituting \(p_{T,t-1}^{rus} \) from (95), tradable good inflation is represented as a function of home produced and imported goods inflations:

\[\pi_t^{rus} = (1 - \gamma_2)\pi_{T,t}^{rus} + \gamma_2 \pi_{NT,t}^{rus} \] (96)

\[\pi_{T,t}^{rus} = (1 - \gamma_3)\pi_{H,t}^{rus} + \gamma_3 \pi_{F,t}^{rus} \] (97)

Similar to the Armenian block of the model, terms of trade and law of one price (LOP) gap are expressed by the following equations:

\[S_t^{rus} = \frac{p_{rus}^{H,t}}{p_{rus}^{F,t}} \] (98)

\[\psi_t^{rus} = \frac{E_t^{rus} p_t^{*}}{p_{rus}^{F,t}} \] (99)

where \(P_t^{*} \) is the price index of the rest of the world. Internal exchange rate is defined by the ratio of prices of non-tradable good to home produced tradable good:
\[S_{t,t}^{rus} = \frac{p_{NT,t}^{rus}}{p_{H,t}^{rus}} \]

Real exchange rate in a log-linearized form gets the following form:

\[q_t^{rus} = \psi_t^{rus} - (1 - \gamma_3 + \gamma_2\gamma_3) s_t^{rus} - \gamma_2 s_t^{rus} \]

(101)

The above expression shows that changes of real exchange rate are a result of movements of LOP gap, terms of trade and internal exchange rate.

2.2.3. International risk sharing

Under the assumption of complete financial markets, the first order condition expressed as an Euler equation must hold also for any other country:

\[\beta R_t^E_t \left(\frac{C_t^*}{C_{t+1}^*} \right) = 1 \]

(102)

Combining expression (102) with (92) and using the definition of real exchange rate, one gets:

\[C_t^{rus} = \theta C_t^* Q_t^{rus} \]

(103)

for all \(t \), where \(\theta \) is a constant depending on initial conditions. The external world is very big and Russia cannot influence on it. So, it is represented as a closed economy, when production goes only to consumption \((C_t^* = Y_t^*) \). Using the Euler equation with (103) and log-linearizing it around steady state, the consumption equation gets the form:

\[c_t^{rus} = y_{t+1}^* + q_{t+1}^{rus} - (r_t^{rus} - \pi_{t+1}^{rus}) \]

(104)

2.2.4. Labor market

This paper assumes that labor is mobile between tradable and non-tradable sectors of the economy in a way to provide the equalization of wages in both sectors. As shown in Appendix 2, mean wages in Russian tradable and non-tradable sectors are going very close to each other. The second picture of the same appendix shows growth rates of Russian tradable and non-tradable wages, which also do not differ a lot from each other. This stylized fact supports the assumption that wages are equalized in both sectors. So, this paper discusses one mean wage of the Russian economy.
Similar to the Armenian block of the model, labor organizations combine differentiated labor to homogeneous and supply to firms in tradable and non-tradable sectors. Steps of derivation of the New Keynesian Phillips curve for wages are the same as in 2.1.4., and it has the following form:

$$\pi_{W,t}^{rus} = \beta \pi_{W,t+1}^{rus} + \lambda_w^{rus}[mrs_t^{rus} - (w_t^{rus} - p_t^{rus})]$$ \hspace{1cm} (105)

This equation shows that nominal wage is the increasing function of wage expectations and the difference between reserve and real wages in the economy. Real wage is defined by the identity:

$$w_{r,t}^{rus} = w_{r,t-1}^{rus} + \pi_{W,t}^{rus} - \pi_t^{rus}$$ \hspace{1cm} (106)

2.2.5. Production

Firms in Russia operate in tradable and non-tradable sectors. They produce homogeneous tradable ($Y_{T,t}^{rus}$) and non-tradable ($Y_{NT,t}^{rus}$) goods, using the following Cobb-Douglas production functions:

$$Y_{T,t}^{rus} = A_{T,t}^{rus} (N_{T,t}^{rus})^{(1-\alpha_2)}$$ \hspace{1cm} (107)

$$Y_{NT,t}^{rus} = A_{NT,t}^{rus} (N_{NT,t}^{rus})^{(1-\alpha_3)}$$ \hspace{1cm} (108)

where $A_{T,t}^{rus}$ and $A_{NT,t}^{rus}$ are respectively productivity levels in tradable and non-tradable sectors. $(1 - \alpha_2)$ and $(1 - \alpha_3)$ are shares of labor in total resources. The usage of labor is lower in tradable sector compared to non-tradable one ($\alpha_2 > \alpha_3$): $N_{T,t}^{rus}$ and $N_{NT,t}^{rus}$ represent labor in tradable and non-tradable sectors respectively. The last one is given by the constant elasticity of substitution function:

$$N_{NT,t}^{rus} = \left[(1 - \gamma_5) \frac{1}{\eta_5} N_{NT,t}^{rus} \eta_{5-1} + \gamma_5 \frac{1}{\eta_5} N_t^{fm} \eta_{5-1}^{\eta_5} \right]^{\frac{\eta_5}{\eta_{5-1}}}$$ \hspace{1cm} (109)

where $N_{NT,t}^{rus}$ are Russian household members working in the non-tradable sector, N_t^{fm} are Armenian migrants, γ_5 is a share of migrants in total employment of Russian non-tradable sector, η_5 is the elasticity of substitution between them. Armenian migrants do not play a
role in wage determination and take it as given, but they have an impact on marginal cost by their weight, which is very small ($\gamma_5 = 0.004$). Firms in both sectors solve cost minimization problems of the forms:

$$\min \left\{ \frac{W_{T,t}^{rus} N_{T,t}^{rus}}{P_{H,t}^{rus}} \right\}$$

(110)

$$\min \left\{ \frac{W_{N,t}^{rus} N_{N,t}^{rus}}{P_{NT,t}^{rus}} \right\}$$

(111)

Solution of the above optimization problems gives marginal cost equations:

$$MC_{T,t}^{rus} = \frac{W_{T,t}^{rus} (N_{T,t}^{rus})^{\alpha_2}}{(1 - \alpha_2) P_{H,t}^{rus} A_{T,t}^{rus}}$$

(112)

$$MC_{NT,t}^{rus} = \frac{W_{N,t}^{rus} (N_{N,t}^{rus})^{\alpha_3}}{(1 - \alpha_3) P_{NT,t}^{rus} A_{NT,t}^{rus}}$$

(113)

(112) and (113) equations show that marginal cost in each sector is an increasing function of wages and labor input. Marginal cost is decreasing function with respect to the sector’s specific price and technology level.

2.2.6. Price setting

According to Calvo (1983), every period firms receive a signal to optimize their prices with probability $(1 - \theta_i^{rus})$ and set p_i^{rus} optimal price ($i = H, NT, F$) while the remaining θ_i^{rus} part of firms cannot adjust their behaviors and change prices. New Keynesian literature discusses different factors that do not allow firms to change prices in response to the change of economic conditions in a short run. Steps and assumptions of derivation of New Keynesian Phillips curves are same as in Armenian block of the model (see 2.1.6). The final forms of them are the followings:

$$\pi_{H,t}^{rus} = \beta \pi_{H,t+1}^{rus} + \lambda_{H,t}^{rus} MC_{T,t}^{rus}$$

(114)

$$\pi_{NT,t}^{rus} = \beta \pi_{NT,t+1}^{rus} + \lambda_{NT,t}^{rus} MC_{NT,t}^{rus}$$

(115)

$$\pi_{F,t}^{rus} = \beta \pi_{F,t+1}^{rus} + \lambda_{F,t}^{rus} \psi_t^{rus}$$

(116)
where λ_i^{rus} ($i = H, NT, F$) is a coefficient on marginal cost and represents the combination of structural parameters of the model. The LOP gap is an important factor driving the inflation of imported goods. It is called marginal cost of importers.

2.2.7. Equilibrium

The whole value added in the economy is divided into outputs in tradable and non-tradable sectors:

$$Y_t^{rus} = Y_{T,t}^{rus} + Y_{NT,t}^{rus}$$ \hfill (117)

The whole production of non-tradable sector is consumed at home, and it is true the following identity:

$$Y_{NT,t}^{rus} = C_{NT,t}^{rus}$$ \hfill (118)

On the other hand, production of the tradable sector is divided into home and foreign consumptions (export):

$$Y_{T,t}^{rus} = C_{H,t}^{rus} + Y_{EX,t}^{rus}$$ \hfill (119)

Given the demand function for home produced tradable goods of the Russian households as $C_{H,t}^{rus} = (1 - \gamma_3)\left(\frac{p_H^{rus}}{p_t^{rus}}\right)^{-\eta_3} C_{T,t}^{rus}$ and following much of the literature, demand function of foreign households for Russian tradable goods is represented by the following expression:

$$Y_{EX,t}^{rus} = \gamma_3 \left(\frac{p_H^{rus}}{E_t^{rus} D_t^*}\right)^{-\eta_3} Y_t^*$$ \hfill (120)

where export is a function of external demand and relative prices.
2.2.8. Monetary policy

The model is closed by adding Taylor (1993) type monetary policy rule of the form:

\[R_t^{rus} = (R_{t-1}^{rus})^{\rho_r^{rus}} \left\{ \left(\frac{\pi_t^{rus}}{\pi_{ss,rus}} \right)^{\rho_{\pi}^{rus}} \left(\frac{Y_t^{rus}}{Y_{ss,rus}} \right)^{\rho_{Y}^{rus}} \right\}^{(1-\rho_r^{rus})} \]

(121)

The Central bank is forward looking with an interest rate persistence component and responds to inflation expectations and the future output gap.

2.2.9. External world

The Russian economy is small relative to the rest of the world and cannot impact on it. The external sector is modelled exogenously. Foreign demand, inflation and interest rate follow first order autoregressive processes:

\[y_t^* = \rho_y^* y_{t-1}^* + \sigma_{y,t}^* \]

(122)

\[\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + \sigma_{\pi,t}^* \]

(123)

\[r_t^* = \rho_r^* r_{t-1}^* + \sigma_{r,t}^* \]

(124)

where \(\rho_y^*, \rho_{\pi}^*, \rho_r^* \in (0,1) \) are persistence coefficients and \(\sigma_{y,t}^*, \sigma_{\pi,t}^*, \sigma_{r,t}^* \) are independent and identically distributed error terms with zero mean.

The whole set of equations of the log-linearized model is written in Appendix 1.
3. Data

For the estimation of the log-linearized model, 22 structural shocks and 22 time series are used with quarterly frequency (see Appendix 3.1.). 19 time series out of 22 start from the first quarter of 2003 and end in the second quarter of 2015. Data about Armenian labor market based on Household’s integrated living conditions surveys, which concepts are mainly based on principles recommended by International Labor Organization (ILO), start from the second quarter of 2008. So, data of Armenian employment start from the first quarter of 2008 and end in the second quarter of 2015. Information about Russian employment starts from the first quarter of 2006. Data of employment in tradable (agriculture and industry) and non-tradable (construction, trade and service) sectors are used in current model. Time series of consumptions represent real private consumptions published by Statistical services in both countries. Armenian interest rate is an interbank interest rate while the Russian interest rate is money market rate. Data of Armenian GDP is used, while Russian GDP is divided into the output of tradable and non-tradable sectors. Real wages are calculated by dividing average nominal wages to CPI index. CPI of Russia is divided to tradable (goods) and non-tradable (services) price indexes. The Armenian CPI is divided into home produced and imported goods price indexes from Russia. The real exchange rate of Armenian dram is calculated by using CPI indexes of Armenia and Russia and nominal exchange rate. The real effective exchange rate of Russian ruble represents exchange rate of ruble to bilateral currency basket of USD and Euro. Data on migration is approximated to the border crossing. Time series (CPI, GDP and interest rate) of the foreign sector are calculated by weights of the Russian bilateral exchange rate basket.

In a first stage, all data except interest rates are seasonally adjusted using the X12 method. In a next step, all series are logged (100*log) besides interest rates. Time series are de-trended using univariate Kalman filter, which is expressed by (3.1 – 3.4) equations:

\[X_t = X_{\text{trend}} + X_{\text{gap}} \] \hspace{1cm} (3.1)
where X_t is observed data, which is divided into trend and gap components.

$$\Delta X_{\text{trend}_t} = X_{\text{trend}_t} - X_{\text{trend}_{t-1}} \quad (3.2)$$

$\Delta X_{\text{trend}_t}$ is a percentage change of trend in an one-quarter. Trend change depends on its previous lag, steady state level of growth and disturbance component:

$$\Delta X_{\text{trend}_t} = \alpha_1 \Delta X_{\text{trend}_{t-1}} + \frac{(1 - \alpha_1) ss_{\text{growth}}}{4} + \epsilon_{t}^{\text{trend}} \quad (3.3)$$

where α_1 is a coefficient of persistence, $(1 - \alpha_1)$ is a speed of going to its steady state growth level, ss_{growth} is a yearly steady state growth rate of observed macroeconomic variable and $\epsilon_{t}^{\text{trend}}$ is an independent and identically distributed normal error term with zero mean. Gap component is represented by a first order autoregressive process:

$$X_{\text{gap}_t} = \alpha_2 X_{\text{gap}_{t-1}} + \epsilon_{t}^{\text{gap}} \quad (3.4)$$

where α_2 is a persistence of previous lag and $\epsilon_{t}^{\text{gap}}$ is interpreted by the same way as trend component shock.

Appendix 3.2. shows graphical representation of time series after all transformations, which are used as an input in the estimation process of the model.

The twenty two shocks in the model are consumption preference shocks both in Armenia and Russia, a risk premium shock (Armenia and Russia), a productivity shock in Armenia, productivity shocks in Russian tradable and non-tradable sectors, price mark-up shocks of home produced and imported goods in Armenia, price mark-up shocks of home produced tradable, non-tradable and imported goods in Russia, a wage mark-up shock (Armenia and Russia), a monetary policy shock (Armenia and Russia), a migration policy shock, a demand shock in Armenia, a labor supply shock in Russia, foreign demand, inflation and interest rate shocks. Besides monetary policy shocks, all shocks are assumed to follow a first order autoregressive process with i.i.d. normal error terms such that $\epsilon_t = \rho \epsilon_{t-1} + \sigma_t$, where the shock $\epsilon \in \{e_{\text{arm}}^{\text{arm}}, e_{\text{prem}}^{\text{prem}}, e_{\text{rus}}^{\text{rus}} a^{\text{arm}}, a^{\text{rus}}, a^{\text{NT}}, e_{\pi H}, e_{\pi F}, e_{\pi NT}, e_{\pi F}, e^{\text{arm}}, e^{\text{rus}}, e^{\text{arm}}$ politics, $e_{\pi}^{\text{Y}}, e_{\pi}^{\text{rus}}, y_t, \pi_t, r_t^*$, $0 < \rho < 1$ and $\sigma_t \sim N(0, \sigma_\epsilon)$. Monetary policy shocks $\sigma_{\epsilon, t}^{\text{arm}}$ and $\sigma_{\epsilon, t}^{\text{rus}}$ are independent and identically distributed normal error terms.
4. Estimation

The estimation process of DSGE models, motivated with Bayesian ideas, consists of two stages. At the first stage, the approximation modal value of the posterior distribution is determined with numerical optimization methods. At the second stage, the shape of parameters distribution in the neighborhood of the posterior mode is estimated by applying MCMC techniques. Thus, a sample from model parameters posterior distribution is generated. Most of the authors of DSGE models divide parameters into two groups: calibrated and estimated. Then the estimation process with Bayesian techniques is applied only to some of the parameters. Such a mixed approach is quite common in literature and could lead to more efficient estimation of the non-calibrated parameters (see Canova 2007). Together with 22 time series, model has 22 shocks to provide a stochastic singularity.

4.1. Calibration

As in other similar studies, some parameters are calibrated to match important stylized facts in the data. The values of fixed parameters are summarized in Table 1 (Appendix 4). The discount factor β for both countries is set at 0.99 to imply a real interest rate of 4%. The share of imported goods from Russia in Armenian CPI γ_1 is calibrated to 0.1 to match the fact that in the observed period imported goods from Russia count 25% of Armenian import, which is 10% of consumption. The share of private consumption in GDP C^{SS} is assumed to be 0.85. Relative average wage in Armenia is two times small to Russian average wage $W^{ARM}_{SS}/(W^{RUS}_{SS} * E^{ARM}_{SS})$, which is observed in the 2003-2015 period. Share of non-tradable goods in Russian CPI γ_2 is approximated to the share of services, which is 35% in consumer basket. Share of imported goods in the tradable basket of Russian households γ_3 is calculated by the ratio of Russian import to remaining 65% of consumption, which is 70%. The share of employment in Russian non-tradable sector γ_4 is calibrated to 0.7, which is calculated by dividing the employment in construction, service
and trade sectors to total employment. The non-tradable sector’s share in Russian output γ_7 is calibrated to 0.6 to match the stylized facts on Russian national accounts. The share of Russian export from tradable sector γ_6 is calculated by dividing the Russian export to tradable sector’s output, which is fixed to 0.65. According to some estimates, seasonal migrants in Armenia are about 200000 people. So, the ratio of migrants in Armenian labor force N_{SS}^{M} is fixed to 0.15. On the other hand, this share in Russian non-tradable employment γ_6 is calibrated to 0.4%. According to the estimations and surveys of Statistical Department of the Central Bank of Armenia, migrants spend about 30% of their incomes on consumption in destination country. So, the τ is calibrated to 0.3. Having no direct evidence about migration costs, the coefficient σ is set to 0.12 to match the overall migration costs to be 0.8% of GDP, which is about 400 US dollar per migrant. The value of the political factor in steady state $POLITICS^{SS}$ is calibrated to 3. The size of the latter do not impact on model dynamics but only on the magnitude of migration policy shock. Following much of the literature on business cycles (see Alvarez-Parra et al (2011), Hove et al (2012) etc.), the share of capital in tradable sector α_2 is calibrated to 0.5 and the share of capital α_3 is set to 0.3 in the non-tradable sector. The share of capital in Armenian production function α_1 is calibrated to 0.35. Literature discusses the value of elasticity of substitution between tradable and non-tradable goods from 0.2 to 5. In a case of Armenia, this parameter η_1 is fixed to 1.1.

4.2. Prior distributions

The remaining parameters are estimated. Beta distribution is used for the parameters that take sensible values between zero and one, the gamma distribution for parameters restricted to be positive and the inverse gamma distribution for the shock variances (see Appendix 4: Table 2, Table 3, Table 4).

The relative disutility of working in Russia is calibrated to 1.3 with 0.35 standard deviation, mentioning the home bias of the Armenian household.
The prior mean of price stickiness coefficients of domestically produced goods in Armenia θ_H^{arm} and in Russia θ_H^{rus}, θ_{NT}^{rus} is calibrated to 0.75 to match a yearly duration of prices. For mentioning the more monopolistic power of importers compared to domestic producers, prior means of price stickiness coefficients are set to 0.65 both in Armenia and Russia, assuming the price duration of 3 quarters.

The prior means of the Calvo parameters of wages $(\theta_W^{\text{arm}}, \theta_W^{\text{rus}})$ are set to 0.75 in order to match a yearly average wage renegotiation frequency, as in Dickens et al (2007). Following much of the literature, for example, Gali et al (2012), Grabek et al (2013) etc., prior means of the inverses of the elasticity of labor supply with wages for three types of workers $(\phi_{\text{arm}}, \phi_m$ and ϕ_{rus}) are calibrated to 2.0 with 0.4 standard deviations. Given the well-known problem with identification of the elasticity of substitution across different varieties of labor, the prior means of these coefficients are set to the mean value of the suggested values by Smets and Wouters (2009) and Gali (2011). ϵ_W^{arm} and ϵ_W^{rus} are calibrated to 4.0, which implies a steady state mark-up of 33%.

The problem is also raised with the identification of parameters’ values, which describe elasticity of substitution between different groups of goods. These coefficients are elasticity of substitution between tradable and non-tradable goods, and elasticity of substitution between domestically produced and imported goods. Prior means of two parameters $(\eta_2$ and η_3) are set to 1.4 with 0.25 standard deviations.

The prior means of Taylor rule responses to inflation $(\mu_{\pi}^{\text{arm}}$ and μ_{π}^{rus}), output $(\mu_y^{\text{arm}}$ and μ_y^{rus}) and the interest rate smoothing parameters $(\rho_r^{\text{arm}}$ and ρ_r^{rus}) equal to 1.5, 0.5 and 0.6 respectively. These values are commonly used in the literature.

As usually done in the literature, for example, Smets and Wouters (2007), all parameters of the autoregressive processes are calibrated at the same size (see Table 3). It is assumed that persistence coefficients of AR(1) processes have a beta distribution with mean value 0.72 and 0.1 standard deviation.
Prior distributions of standard errors of the shocks are calibrated using the volatility in the observed data. Overall, volatilities in the data are the same in Armenia and Russia, expect interest rates and prices. The prior calibrations of standard errors of foreign shocks are smaller than the ones for Armenian and Russian structural shocks (see Table 4).

4.3. Parameter estimates

The fourth, fifth and sixth columns of Table 2 (structural parameters), Table 3 (persistence coefficients of AR(1) processes) and Table 4 (standard errors of the shock) show the posterior means together with 90% confidence intervals. The posterior parameter space is explored using the Metropolis-Hastings algorithm. The reported parameters are obtained from running 5 parallel chains with 1000000 draws. Acceptance rates of draws are 31.08%, 30.87%, 30.98%, 31.04% and 31.03% respectively. Figure 4.2 shows the convergence diagnostics of the likelihood function of the model. The blue line shows the 80% interval range based on the pooled draws from all sequences while the red line shows the mean interval range based on the draws of the individual sequences. The second and third column with the appended (m2) and (m3) show an estimate of the same statistics for the second and third central moments. The convergence is achieved when two lines are stabilized horizontally and should be close to each other. Judging about comparisons between prior and posterior distributions (see Figure 4.1 in Appendix 4), data seems to be quite informative for most of the parameters. Parameters, prior distributions of which are not updated, are elasticities of substitution between varieties of labor in Armenian and Russia, reaction of interest rate to inflation expectations in a Taylor rule of Armenian Central Bank, the persistence coefficient of political shock and the persistence coefficient of labor supply of the Russian households.

The posterior mean of relative disutility of working as a migrant is estimated to be 0.7, which rejects the home bias hypothesis of the Armenian households. They get more disutility from working in Russia compared to ones working in Armenia.
The posterior mean of Calvo price stickiness coefficient of Armenian home produced goods is 0.86, which corresponds to price duration of 7 quarters. The same coefficient for imported goods from Russia is estimated to 0.54. The judgement about the monopolistic power of importers is proved. The posterior mean of price stickiness coefficient of domestically produced tradable goods is 0.69, which is lower because of the huge oil share in Russian tradable sector. The estimated price duration of imported goods in Russia is 3 quarters. The posterior mean of Calvo coefficient for non-tradable goods is 0.82.

The posterior means of wage stickiness are 0.79 and 0.62 for Armenia and Russia respectively. This shows that Armenian households negotiate about wages one time during 4.7 quarters. The duration of Russian household’s wage contracts is lower and estimated to 2.6 quarters. On average, the frequency of wage negotiations is higher than price duration in Russia. Price stickiness and wage stickiness are very close in Armenia. The posterior means of elasticities of substitution between varieties of labor are not much different from prior means. They are estimated to 3.89 and 3.79 for Armenia and Russia respectively. The posterior means of the inverse of labor supply elasticities are 1.28, 2.81 and 1.9 for workers in Armenia, Armenian migrants and Russian households respectively. This means that the worker in Armenia increases a labor supply more with respect to 1% increase of real wages than the Russian household does. The Armenian migrant prefers to increase labor supply with wage less because of relatively higher wages in Russia. This means that the substitution effect is much lower for Armenian migrant.

The posterior mean of the elasticity of substitution between tradable and non-tradable goods for Russian household is 1.03, which is different from its prior mean. On the other hand, the elasticity of substitution between domestically produced and imported tradable goods is estimated to 0.56, which is explained by some habits of Russian households. For example, when the relative price of imported and home produced goods increases by 1%, Russian household decreases the demand for import only by 0.56%.
The persistence coefficients of interest rates are estimated to 0.67 and 0.46 for Armenia and Russia respectively. The posterior mean of the reaction of interest rate to inflation expectations is 1.45 in Armenia, which is not much different from its prior mean. Russian Central Bank reacts to inflation expectations with 1.78 coefficient. On the other hand, both Central Banks react to future output gap with the same size of 0.59.

The fourth, fifth and sixth columns of Table 3 show the posterior means of persistence parameters of autoregressive processes. The point posterior estimates suggest that their inertias in Armenia and in Russia are approximately same. The only exceptions are the coefficient on the mark-up of imported goods and productivities. These coefficients for imported goods in Armenia and Russia are estimated to 0.81 and 0.35 respectively. The posterior mean of persistence coefficient of productivity shock in Armenia is 0.64, while the same coefficients in Russian tradable and non-tradable sectors are 0.78 and 0.86 respectively. The posterior means of the persistence parameters $\rho_{C_{arm}}$, $\rho_{C_{rus}}$, $\rho_{\pi_{F}}$, $\rho_{prem_{rus}}$, $\rho_{a_{NT}}$ and ρ_{y^*} equal to 0.85, 0.88, 0.81, 0.83, 0.86 and 0.85, indicate that shocks to consumption preference in Armenian and Russia, imported goods price mark-up shock in Armenia, risk premium shock in Russia, productivity shock in Russian non-tradable sector and foreign demand shock are substantially more persistence than the other shocks.

The posterior estimates of shock volatilities (see Table 4) confirm the prior assumption about their homogeneity across two countries. Standard deviations of the same structural shocks in Armenia and Russia are approximately estimated at the same size. The only exception is the volatility of the productivity shock in Armenia, which is higher compared to its Russian counterparts about 1.7 times. The posterior means of standard errors of the foreign shocks are three-four times smaller than the posterior means of Armenian and Russian standard errors of the structural shocks, which is a feature of advanced countries. Overall, volatilities of the model estimated shocks are at the reasonable size (the posterior mean of the standard error of the largest shock is 4.3%), which means that all shocks are economically interpretable.
5. Model Properties

This section overviews some of the model properties, which are the ability of the model to generate historical data, estimation of historical structural shocks, generation of Russian migration policy and real remittances data, historical decomposition of the main model variables, historical simulations, impulse response functions and conditional variance decomposition.

5.1. Generation of historical data and estimated structural shocks

Figure 5.1 in Appendix 5 captures the actual and model generated data. The last one is the model’s Kalman filtered estimates at the posterior mean. Overall, the model’s fit is quite well. The model is able to reproduce dynamics of migration, real wages in Armenia and Russia, interest rates in Armenia and Russia, real exchange rates and inflations data in both countries. The volatilities of the model generated data of employment are higher than the actual data. In Armenia, it is explained by volatilities of average worked hours, which is not included in the data. Labor force surveys in Russia do not cover migrants working in the country, which is a large part of total Russian employment and it can impact on a volatility of GDP.

Estimated structural shocks of the model are shown in figure 5.2. Consumption preference shock is the so-called Smets-Wouters (SW) internal risk premium shock (see Smets-Wouters 2007), which is important in DSGE models because of its capacity to generate business cycles co-movement among output, employment, consumption and migration. Krishnamurthy and Vissing-Jorgensen (2012) use “flight-to-quality” as an example of SW shock. Chari et al. (2009) assume that SW shock may pick up variation in flight-to-quality as well. Fisher (2014) concludes that the SW internal risk premium shock can be interpreted as a shock to the demand for safe and liquid assets. In general, this shock describes financial frictions in the economy.
Since the fourth quarter of 2014 remittances inflowing to Armenia declined significantly, which was a result of Russian crisis. As shown in Figure 5.2, from the fourth quarter of 2014 to the first quarter of 2015 Russia had a higher risk premium. This came to Armenia, but the relative risk premium of Armenia to Russia did not increase (even it decreased a little bit). The decline of remittances increased Armenian risk premium to the rest of the world and generated higher depreciation expectations against US dollar among households. In that situation households’ consumption preference increased. The model generates negative internal risk premium shock in Armenia, which is supported by historical events. Central Bank of Armenia tightened monetary conditions significantly to break higher inflation expectations. In a period from 2009 to 2010, model estimates positive risk premium shock in Armenia relative to Russia, which is explained by the deeper decline of Armenian economic growth and the increase of the borrowing from Russia. Negative productivity shock in Armenia in 2010 was linked to bad weather conditions, which led to a huge decline of the agricultural sector. Since 2010 productivity mostly has shown positive values because of developing of Armenian tradable sector (development of the mining sector and expansion of greenhouses). Model estimates a deep negative price mark-up shock of imported goods from Russia. This is supported by historical event too, because fees on imported goods from Russia were removed from the first quarter of 2015. A negative aggregate demand shock from 2009 to 2010 is explained by a decline of investments after crises. In the second quarter of 2015, government did an expansionary policy, which is captured in demand shock figure. The wage mark-up shock in Armenia is estimated to be mostly positive up to 2008, which is a result of double-digit growth of nominal wages. Model estimates periods of minimal wage increase in Armenia. From the second part of 2013, a positive wage mark-up shock is explained by an increase of nominal wages by some enterprises associated with pension reform.

A significant increase of cost of borrowing in Russia is overviewed by two crises. It is captured in a figure of consumption preference shock in 2008 and 2014. Productivity
shock in the Russia tradable sector mostly performs to be positive after 2010, because of expansion of oil sector due to an increase in oil prices. Negative productivity shock in the non-tradable sector at the end of 2014 and in the first two quarters of 2015 is explained by a decrease of effective labor. Despite the employment of Russian households was not decreased as a result of 2014 crises, migrants and average working hours were declined, which generated a negative productivity shock in the non-tradable sector. Home produced tradable goods price mark-up shock is much more volatile compared to non-tradable goods price mark-up shock. A huge negative size of imported goods price mark-up shock was generated by Russian government through regulations of imported goods prices. The government did not allow to increase prices of some imported goods because of economic security of Russia, so their prices appeared to be low compared to marginal costs of importers. Before 2008, the wealth accumulation process of Russia forced to an increase of households substitution effect. It mostly generated positive values of labor supply shock up to 2008. When Russia recovered from the crises, the relatively higher wealth of households increased the income effect and households preferred to work less. The situation was changed after the recent crisis, and the value of the shock became positive in the second quarter of 2015. The model estimated foreign shocks in a way to generate historical data.

Overall, all the estimated structural shocks of the model are supported by stylized facts and historical events.

5.2. Generation of Russian migration policy and real remittances data

The inverse of the model estimated political factor is captured in Figure 5.3 of Appendix 5. The positive movement of it means a favorable situation in Russian migration policy for Armenian migrants. The estimated political factor fits the Russian migration policy quite well. At the end of 2005, Russia tightened the immigration legislation by adding the article “Organization of illegal migration” in the Criminal code, where measures against
violating immigration rules were tightened. The policy authorities simplified the registration process of temporary stay in Russia in 2007. In 2009, quotas of the permission of work were declined significantly, which generated negative migration policy shock in that period. Since March 25 of 2011, the deadline for the migration registration at the place of stay of foreign citizens has increased. Since March 2011, the Federal Migration Service of Russia has changed the procedure for registration of time making on the work of foreign citizens arriving in Russia in the visa-free regime. If previously a work permit could be requested on behalf of a foreigner for up to 3 months, now the documents are submitted to the state authority only at the request of the employer, which is decorated for up to one year. The result is the generated positive policy factor in 2011. The Order of First Deputy Mayor of Moscow on October 17, 2011, N957: “About measures to prevent illegal use of the labor of foreign nationals and their residence in the building objects“. Heads of construction companies of Moscow were instructed to prevent the facts of illegal use of foreign nationals working and living in the building objects, which led to higher expenditures of migrants associated with the hiring of rooms and apartments. On June 12, 2013, Russian President Vladimir Putin signed a decree N1239 “On the implementation of the State program to assist the voluntary resettlement to the Russian Federation of compatriots living abroad” containing a new version of Public program, which expanded entry channels into the program and other favorable conditions. Joining the Eurasian Economic Union generated the positive migration policy shock, which has turned out to negative value since 2015 because of the significant increase of backwardations of the Armenian migrants.

Figure 5.4 captures real remittances. The red line is real remittances gap calculated by Hodrick-Prescott filter using real remittances data. The green line is filtered by the quarterly projection model (QPM), which is the core model for policy analysis and forecasting in Central Bank of Armenia. Remittances data are not entered in the model developed in this paper. This model generates real remittances data (blue line in Figure
5.4). As one can see, the model performs quite well and estimates the data, which are not inputted in the model.

5.3. Historical simulations

This exercise is done to test the model properties to forecast for different horizons (2, 4, 6, 8 and 12 quarters ahead) and examine the usefulness of the model to capture business cycle movements observed in Armenia and Russia. All simulations are started at the same time, but for different horizons. The model simulations are presented in Figure 5.5 and Figure 5.6 in Appendix 5. Figures show that the model predicts quite well overall movements in migration, real wages in Armenia and Russia even up to 12 quarters. Model predictions of the real exchange rate of Armenian dram to Russian ruble and the ruble’s real effective exchange rate, interest rates respectively in Armenia and Russia are also in line with business cycle patterns. This means that real remittances forecast for a 3 years horizon is also quite well because in this model real remittances are the combination of real Russian wage, migration and real effective exchange rate of Armenian dram to Russian ruble. Speaking about employment, it must be mentioned that the model estimates effective working hours, which are creating GDP. Observed data on employment is the number of employed in the economy.

5.4. Historical decomposition

Figures 5.7-5.11 in Appendix 5 show contributions of structural shocks of the model to migration costs, migration, real remittances, Armenian and Russian real wages. Periods are represented on a horizontal axis starting from the first quarter of 2003 and ending in the second quarter of 2015. The vertical axis shows percentage deviation of the variables from steady state. As one can see from Figure 5.8, there are two periods of the pick of migration costs: world economic crises and recent Russian crises. In 2008, the main contributions to higher migration costs had a negative relative risk premium between
Armenia and Russia, which turned out to positive from the first quarter of 2009 because of a significant decline in Armenian GDP, negative consumption preference shock in Armenia and price mark-up shock on Russian tradable goods. Positive risk premium and the lower productivity in Russian non-tradable sector contributed to lower migration costs. In post crises period, the relative risk premium volatility between Armenia and Russia is decreased. Since the fourth quarter of 2014 higher migration costs were created by consumption preference shock in Armenia, negative mark-up shock of Russian wages and the tight monetary policy in Armenia.

Figure 5.7 displays contributions of disturbances to migration. Russian migration policy plays a significant role in migration volatility (epss_m_arm in the figure). The significant decline of migration in 2009 was the result of negative productivity shock in Armenia, positive risk premium shock in Russia and the cut of work permissions in Russia. The recent decline of migration has been mostly supported by negative internal risk premium shock in Armenia, positive risk premium shock in Russia and negative Russian wages. The positive contribution to migration had an increase of borrowing costs in Russia, negative price mark-up shock on imported goods in Russia and the positive productivity shock in Armenia.

Figure 5.9 shows the historical decomposition of the model generated remittances data. Almost all the shocks of the model had a visible contribution to the fluctuations of real remittances from steady state. World economic crisis in 2008-2009 and Russian crisis periods were characterized by a huge decline in real remittances inflowing to Armenia. In 2008, it was supported by negative productivity shock, imported goods negative price mark-up shock and Russian contrary migration policy. During the period of Russian crisis, the decrease of remittances has been mostly supported by negative internal risk premium shock in Armenia, negative wage mark-up shock in Russia. On the other hand, some of the Russian structural shocks impacted on real remittances positively: positive monetary policy
shock, negative productivity shock in non-tradable sector and negative price mark-up shock of imported goods.

As shown in Figure 5.10, the main supporters of real wage movements in Armenia were home produced good price mark-up, imported good mark-up and wage mark-up shocks in Armenia. The rise of Russian risk premium increased Armenian real wage. On the other hand, positive internal risk premium shock decreased the Armenian real wage.

Figure 5.11 shows contributions of structural shocks on Russian real wage. The deep decline of wage in recent crises was contributed by negative wage mark-up shock, positive price mark-up shock of non-tradable goods and positive SW shock. 5% positive contribution to real wage made an administratively generated negative price mark-up shock of imported goods by the Russian government.

5.5. Impulse response functions

Figures 5.12-5.31 in Appendix 5 plot impulse responses of variables to the model structural shocks. This tool enables to better understand the functioning of the model and the impact of each shock on migration. Responses are measured as a percentage deviation from steady state. The horizontal axis shows the number of quarters following the shock. Structural shocks of the Armenian economy do not influence on Russia because Armenia is small compared to Russia. On the other side, shocks of the Russian economy hit Armenia because Russia is one of the main Armenian trading partners and because of it to be the main destination country of Armenian migrants (90% of cases). Shocks from the rest of the world come to the Armenian economy through Russia.

A consumption preference shock in Armenia (Figure 5.12) increases the cost of borrowing for a given interest rate, which initially worsens consumption and output. The fall in production lowers firms’ demand for labor. This reduces marginal cost and the latter puts pressure on home produced goods prices to fall. As a result, it leads to the decline in CPI inflation. The monetary policy reacts to weaker inflation and output by cutting the
interest rate. The low interest rate depreciates nominal exchange rate and brings to an increase of marginal cost of importers, which is measured by a law of one price (LOP) gap. Higher prices of imported goods lead terms of trade of Armenia with Russia to become worse. The last one with the LOP gap depreciates real exchange rate. The weak economic activity reduces marginal rate of substitution in the economy, which declines nominal wages. Nominal wage goes down more than the deflation in the economy and reduces real wage. Migration costs are decreased as a result of low real wages and depreciated real exchange rate. Migration becomes less costly, and people increase migration. Real remittances sent to Armenia are increased more with a support of depreciated national currency.

Figure 5.13 shows that risk premium shock in Armenia causes a depreciation of nominal exchange rate and increases inflation of imported goods. Higher inflation of imported goods worsens terms of trade, which depreciates real exchange rate. Consumers switch off their consumption from imported goods towards home produced goods. As a result, overall consumption increases, and firms increase their hire of labor to support the higher demand in the economy. Improved economic activity rises marginal rate of substitution and pushes nominal wages to go up. Nominal wage increases real wage, and the last one puts pressure on marginal cost to rise. This leads to a rise of home inflation and together with the imported inflation supports to the increase of CPI inflation. Central bank reacts by tightening monetary conditions. The effect of depreciated real exchange rate is performed over the effect of higher wages, and migration costs are declined. On the other hand, the employment’s effect is higher than lower migration costs, and the migration is cut a little bit. Real remittances, sent to Armenia, are increased by the support of depreciated real exchange rate.

As shown in figure 5.14, productivity shock in Armenia initially reduces marginal cost of domestic firms, enabling them to decrease prices for their goods. It worsens terms of trade and depreciates real exchange rate, which forces consumers to consume more
home produced and less imported goods. Productivity shock decreases the employment in a short run. Low employment reduces the substitution effect between leisure and consumption and impacts on nominal wages to go down. The decline of nominal wages is lower than the deflation in the economy. The result is that the real wage is increased and its effect dominates over the effect of depreciated real exchange rate. As a result, migration costs are increased. The low employment increases migration. Remittances response to the high migration by increasing.

Figure 5.15 shows impulse responses to an aggregate demand shock in Armenia. Demand shock increases output on impact. The consumption falls as a result of the substitution effect. Firms hire more workers to service higher demand in the economy, which put pressure on marginal cost and increase inflation of home produced goods. Inflation of domestically produced goods increases overall inflation. Monetary authorities respond to higher inflation by raising the interest rate. The high economic activity raises the marginal rate of substitution and forces nominal wages to go up. The rise of nominal wages is more than the inflation of CPI, which increases real wages. The tight monetary policy appreciates nominal exchange rate and reduces the marginal cost of imports. The opposite direction of prices of home produced goods and imported goods improves terms of trade. The real exchange rate is appreciated in response to the better terms of trade. Both the real wage and the real exchange rate increase migration costs. Moreover, migration is declined as a result of both high employment and migration costs. The decreased migration and appreciated real exchange rate affect on real remittances to go down.

Figure 5.16 displays that a monetary policy shock in Armenia initially cuts consumption through Euler equation and appreciates nominal interest rate through the uncovered interest parity condition. Firms hire less labor because of low economic activity. This reduces nominal wage. The effect of nominal wages performs over the deflation’s effect, and real wages are gone down, which reduce marginal cost, and producers decrease
prices for their goods. Appreciated nominal exchange rate reduces the marginal cost of importers and enables them to decrease prices. The latter is much more higher compared to home produced goods deflation. As a result, terms of trade are improved, which appreciate real exchange rate. Migration costs are raised in a response of appreciated real exchange rate. The effect of low employment in Armenia exceed the effect of higher migration costs, and households’ members increase migration, but real remittances are declined because of appreciated real exchange rate.

As shown in figure 5.17, domestic inflation shock in Armenia increases terms of trade. Improved terms of trade appreciate real exchange rate. Monetary policy responses to the high rate of inflation by increasing the interest rate. The increased interest rate leads to the fall in consumption. Households become to consume more imported goods because of real exchange rate appreciation. The decline of consumption is supported by home produced goods. In a response to lower economic activity, firms decrease their hires of labor. Fall of employment lead to the decline of marginal cost and marginal rate of substitution. The latter reduces nominal wage. On the other hand, the high inflation forces the real wage to go down. The effect of low real wage performs over the appreciated real exchange rate, and migration costs are declined. The effect of migration costs on migration is dominated over the effect of the declined employment. Real remittances sent to Armenia are increased as a result of high migration.

Figure 5.18 captures responses of the model variables to imported good price mark-up shock in Armenia. Initially, it worsens the terms of trade and decreases LOP gap. They impact on the real exchange rate on opposite direction, and the power of LOP gap exceeds over the terms of trade by the economy openness’ coefficient. So, the real exchange rate is appreciated. Imported goods inflation increases CPI inflation. Central bank reacts to the high inflation by tightening monetary conditions. In a response to the interest rate increase, households postpone their consumption in future and decrease today's consumption. Employment is cut in a response to low economic activity, which brings to the fall of the
marginal rate of substitution. MRS declines the nominal wage. The latter together with the high inflation decreases real wage significantly, which forces migration costs to fall. The low migration costs raise migration. Remittances are increased a little bit because of the decreasing effect of the appreciated real exchange rate.

Figure 5.19 shows that a wage mark-up shock in Armenia increases nominal and real wages. Real wage puts pressure on marginal cost to go up, raising the inflation above target. Monetary authorities react to the high rate of inflation by increasing the interest rate. It declines the aggregate demand. Firms react to the low demand by cutting the employment. Home produced goods inflation leads to the improvement of terms of trade, which appreciates real exchange rate. Real wage together with the appreciated exchange rate forces migration costs to go up. The effect of the high migration costs is exceeding over the effect of the low employment, and the migration is declined. As a result of the low migration and appreciated real exchange rate, remittances are decreased.

As shown in Figure 5.20, a consumption preference or internal risk premium shock in Russia increases a cost of borrowing of households. Initially, it decreases consumption in Armenian through international risk sharing condition. Aggregate employment in Russia is decreased as a result of the low economic activity in the non-tradable sector. In a response to the negative output gap, Central bank loses monetary conditions. The lower interest rate depreciates nominal exchange rate, which increases the marginal cost of importers. The high inflation of imported goods worsens terms of trade and depreciates real exchange rate. Depreciated exchange rate increases export of Russian goods and does not let the output of tradable sector to decline. Firms in tradable sector increase their hires of labor and put pressure on marginal costs to raise by a small amount. But prices of non-tradable goods are declined as a result of lower employment in that sector. As a result of higher inflation of imported goods, inflation of CPI is still positive. The low consumption and employment decrease the marginal rate of substitution in the economy. A drop of MRS reduces nominal and real wages. The latter increases migration costs of Armenian migrants
by the size of its decline. Inflation in Russia hits Armenian economy through imported goods inflation and causes a decline in the terms of trade. Bad terms of trade depreciate real exchange rate of Armenian dram to Russian ruble. Firms hire less labor as a result of lower demand in the economy. Negative demand together with the low employment decreases MRS. As MRS is dropped, both nominal and real wages are decreased. Migration costs become lower for two quarters because effects of depreciated exchange rate and low real wages in Armenia dominate over the effect of low real wages in Russia. Migration costs are increased starting from the third quarter. The effect of the low employment performs over the effect of migration costs, and household members increase their migration. Initially, remittances are increased because of the high rate of migration and depreciated real exchange rate. The later drop of Russian wages decreases remittances.

Figure 5.21 represents that labor preference shock in Russia increases the disutility of work and forces the MRS to go up. The high MRS rises nominal and real wages. Hence, firms of both tradable and non-tradable sectors face higher costs of production. Rise of marginal cost increases inflation of home produced tradable and non-tradable goods. As a result, aggregate inflation in the economy is increased. Monetary authorities respond to the high inflation rate by increasing the interest rate. Higher interest rate decreases consumption, which triggers a fall in employment. Inflation in Russia is expressed in a rise of marginal costs of Armenian exporters, which leads to the rise of imported goods inflation. Imported goods inflation worsens terms of trade and depreciates real exchange rate. Consumers switch their consumption towards home produced goods as a result of the declined terms of trade. Depreciated exchange rate of Armenian dram and higher real wages in Russia decline migration costs. The low migration costs increase a migration of households. Finally, real remittances sent to the Armenian economy from Russia are raised with a support of all the three factors.

Figure 5.22 shows that risk premium shock in Russia initially depreciates both nominal and real exchange rates and brings to the rise of imported goods inflation.
Depreciated real exchange rate increases the demand of foreign households for Russian export. The high rate of imported goods inflation worsens terms of trade, and Russian households increase their consumption of home produced goods. To provide higher external and internal demand, firms of both sectors rise their hires of labor. The high economic activity puts pressure on MRS to go up and increases nominal wages. A positive gap of employment impacts on the marginal cost of two sectors to rise, leading to the high inflation. Inflation of CPI is higher than the rise in nominal wages, which forces real wage to decline. As a result of the initial depreciation of Russian ruble, Armenian dram is appreciated against Russian ruble nominally because Russian Central bank increases the interest rate more than Armenian monetary authorities. The appreciation of Armenian dram is lower compared to inflation in Russia, creating the positive LOP gap. Terms of trade become worse as a result of the high imported inflation, which leads to the depreciation of real exchange rate. So, consumption is increased by the support of home consumption, and firms start to hire more labor to service the increased demand in the economy. It increases MRS and puts pressures on nominal wages to rise. Nominal wages are increased more than the observed inflation, leading real wages to become positive. The high real wage increases marginal cost. Thus, the inflation of home produced goods is raised. The effect of the depreciated real exchange rate performs over the effect of high wages in Russia and low wages in Armenia, forcing migration costs to fall. Despite the low migration costs, migration is declined as a result of the increased employment in Armenia. Real remittances are remained at positive values with the support of depreciated real exchange rate.

Productivity shock in Russian tradable sector (Figure 5.23) initially leads to the decline of marginal cost and tradable sector’s employment. Deflation of home produced tradable goods results to the worsened terms of trade. In a period of bad terms of trade, foreign and domestic households increase their demand for Russian tradable goods. The low price of tradable goods appreciates internal exchange rate, which forces households
to decline their demand for non-tradable goods. The cumulative effect of productivity shock and the decline of employment in non-tradable sector brings to the decrease of employment, putting pressures on MRS to fall. Nominal wages are decreased as a result of the low MRS. The size of deflation dominates over the decline of nominal wages, which result is expressed in higher real wages. The deflation is hitting the Armenian economy through the cheap imported goods from Russia, which creates the positive terms of trade. It appreciates real exchange rate. Central bank reacts to the low rate of inflation by decreasing the interest rate, which rises consumption. Real wages are increased a little bit as a result of good economic conditions. Its effect on migration costs is invisible. Migration costs go down because of the high real wages in Russia, which create a positive migration. As a result, remittances are increased.

As shown in figure 5.24, productivity shock in non-tradable sector decreases marginal cost of that sector’s producers and leads them to decline prices of their goods. Non-tradable goods deflation depreciates internal exchange rate and switches the households towards consumption of non-tradable goods. Deflation of non-tradable goods lead to the deflation of CPI. Central bank decreases interest rate supporting the inflation to rise to its target. Employment in the tradable sector is increased as a result of the positive external demand for Russian tradable goods. A positive productivity shock in non-tradable sector forces firms to decrease the demand for labor input. The size of the latter is higher compared to the expanded employment in the tradable sector, leading to the decline of overall employment in the economy. The low employment reduces MRS, which puts pressure on nominal wages to fall. In an initial period of simulation, real wages remain negative because of low nominal wages. Starting from the seventh period, it becomes positive because deflation is going to its steady state slowly than the nominal wage does. The negative inflation in Russia brings to the deflation of imported goods in Armenia and appreciates the real exchange rate. The effect of this shock on the real sector of Armenian economy is very small. Migration costs are increased as a result of the appreciated
exchange rate and the low real wages in Russia. Hence, migration is declined because migration becomes expensive for the Armenian households. Real remittances are cut by the support of low wages in Russia and the low rate of migration.

Figure 5.25 demonstrates that the monetary policy shock in Russia forces consumers to decline the consumption. In a response to the low demand, firms from both tradable and non-tradable sectors decline their hires of labor. The decreased labor puts pressures on marginal costs to go down. With comparison to non-tradable sector, the marginal cost of tradable sector is falling more because the more capital is used in that sector. As a result, deflation hits the economy. The rise of interest rate appreciates the nominal exchange rate and imported goods become cheaper for Russian households, which leads to the increase of terms of trade. The latter together with LOP gap appreciates real exchange rate. The decline of consumption and employment reduce MRS. The slight decline of MRS decreases nominal wages. The size of the low nominal wage is approximated to the deflation size, and real wages are not changed significantly. The monetary policy shock in Russia depreciates the nominal exchange rate of Armenian dram, which is higher than the observed deflation in Russian. As a result, the price of imported good from Russia is increased. It worsens terms of trade and depreciates real exchange rate. Consumers switch their consumption towards home produced goods and decrease demand for imported goods. But the overall consumption is raised by a small amount. Similar to the previous shock, the impact of the shock on the Armenian real sector has a very small effect. The driver of migration costs is a depreciated real exchange rate. The low migration costs increase migration of households. Real remittances are increased more by the support of positive migration and depreciated real exchange rate.

Figure 5.26 shows that price mark-up shock on home produced Russian tradable goods leads to the high inflation and increases terms of trade. The latter appreciates real exchange rate and cuts the demand of foreign households for Russian export. The internal exchange rate is depreciated as a result of the high inflation of tradable goods. Depreciated
internal exchange rate leads consumers to decrease the consumption of tradable goods and increase their demand for non-tradable goods. The high demand for non-tradable goods rises the employment in that sector. On the other side, employment in the tradable sector is declined higher, which is also supported by the fall of export. As a result, the aggregate employment is reduced and puts pressure on MRS to go down. The low rate of MRS decreases nominal wage in Russia and together with the effect of the high inflation drops real wages significantly. The high inflation in Russia transmits to the Armenia economy through the high inflation of imported goods, which worsens terms of trade and depreciates real exchange rate. The effect of depreciated real exchange rate is small than the effect of the low real wages in Russia, and migration costs go up. The incentive of household members towards migration is declined. The low migration and the low rate of real wages in Russia open the negative gap of real remittances.

Price mark-up shock on non-tradable goods (Figure 5.27) increases the inflation of non-tradable goods and appreciates internal exchange rate. The real exchange rate is appreciated as a result of appreciated internal exchange rate. The CPI inflation in the economy raises. In a response to the high inflation, Central bank reacts by increasing the interest rate, which cuts the consumption of households. The low demand decreases employment, which takes place due to the employment of non-tradable sector. Despite the increase in nominal wages, real wages go down because of high inflation. Prices of imported goods to Armenia become to raise as a result of the positive LOP gap. Increased imported prices worsen terms of trade and depreciate real exchange rate of Armenian dram. Imported inflation increases the CPI inflation a little bit. Central bank answers to the high inflation by tightening monetary conditions. Consumers decrease their consumption and firms hire less labor to service the low demand in the economy. As a result, nominal wages go down. The decline of real wages is higher by the support of high inflation. The effect of depreciated real exchange rate is covered by the low real wages in Russia, and
migration costs are raised. The high migration costs reduce migration. The latter together with the low real wages in Russia decreases real remittances sending to Armenia.

As shown in Figure 5.28, price mark-up shock on imported goods initially worsens Russian terms of trade, which appreciate real exchange rate. But the effect of the low terms of trade performs over the appreciated exchange rate, and Russian export is increased. Good external conditions for Russia force households to increase their demand for home-produced tradable and non-tradable goods. To service the high demand in the economy, firms in both sectors become to hire more labor. A positive employment gap puts pressures on marginal costs of both sectors to rise. As a result, the economy is hit by the inflation of CPI. Improved economic conditions increase MRS. The high MRS raises the nominal wage. The observed inflation leads real wages to decline and goes to Armenia through the high inflation of imported goods from Russia. The latter worsens terms of trade and depreciates real exchange rate of Armenian dram to Russian ruble. Low terms of trade rise the consumption of home-produced goods. To provide the overall supply, firms increase their hires of labor and put pressure on marginal cost to increase. Inflation of CPI is raised due to home and imported goods inflations. Improved economic activity increases nominal wage, which is lower than inflation. So, real wages are cut. The effect of low real wages in Russia dominates over depreciated exchange rate of Armenian dram, and migration costs are increased. The high migration costs lead households to cut their migration. Low migration and wages of migrants decrease real remittances sent to their families.

Figure 5.29 shows that wage mark-up shock in Russia initially increases nominal and real wages. This shock initially decreases migration costs. The hiring of labor becomes costly, which generates the high marginal cost both in tradable and non-tradable sectors. CPI inflation goes up. Monetary authorities react to the positive disturbance of inflation from its target by raising the interest rate. The tight monetary conditions decrease consumption of households. Firms respond to the low demand in the economy by cutting demand for employment, which forces the inflation to go to its target through marginal
costs. The high inflation in Russia increases the marginal cost of Armenian importers, and import becomes costly. It worsens terms of trade of Armenia and depreciates real exchange rate. Consumers switch their consumption from imported towards home produced goods. The effect of the bad terms of trade on consumption is positive, which raises the MRS in the economy. But the observed inflation is higher than the increase of nominal wages, so real wage goes down. All three factors impacting on migration costs decrease the latter. As a result, people in Armenia increase migration, and the inflow of remittances is raised.

As demonstrated in Figure 5.30, foreign demand shock increases Russian export and consumption directly. Firms expand production by hiring more labor to service more internal and external demand. The high employment increases MRS and upwards pressures on nominal wages. Nominal wages raise real wages, and influence on marginal costs to increase from its target. It leads to inflation, which is not raised a lot because of the cheap import. Central bank reacts to the high inflation and positive output gap by increasing the interest rate, which appreciates nominal exchange rate of the Russian ruble and depreciates Armenian dram. Inflation in Russia and depreciated exchange rate of Armenian national currency increase marginal cost of importers. Inflation of imported goods worsens terms of trade and depreciates real exchange rate. Consumption in Armenia is increased as a result of the foreign demand shock, which comes to Armenian economy through Russia. Firms generate positive output gap by hiring more workers. Nominal wages are increased, forcing real wages to follow them because of the relatively low inflation. Migration costs are declined as a result of the high real wages in Russian and depreciated real exchange rate. But the effect of the high employment in Armenia performs over the effects of low migration costs, and households cut migration. Despite low inflation, high wages of migrants and depreciated exchange rate keep remittances above its steady state.

Foreign interest rate shock (Figure 5.31) initially depreciates nominal exchange rate of the Russian ruble and creates the positive LOP gap. High marginal costs of importers let them increase prices, which worsen terms of trade. Terms of trade depreciate real
exchange rate and increase the consumption of tradable and non-tradable goods. Depreciated real exchange rate increases the demand of foreign households for Russian export. Firms in tradable and non-tradable sectors hire more labor to service the excess demand and put pressure on marginal costs to rise. The expanded economic activity increases nominal wages, which is less than inflation and leads to the decrease of real wages. Observed higher inflation in Russia increases the marginal cost of Armenian importers, and the price of import goes up. It worsens terms of trade and depreciates real exchange rate of Armenian dram. Russian positive consumption and depreciation expectations of real exchange rate increase consumption. Expansion of employment brings to the high MRS and increases nominal wages. The impact of the latter on real wages is negative because of the relatively high inflation. The high employment together with the high real wages increases marginal cost and enables domestic firms to increase prices of their goods. During this shock, the Armenian dram is depreciated against Russian ruble nominally, because Central bank of Armenia increases the interest rate less compared to the increase of interest rate in Russia. The effect of negative Russian wages on migration costs is compensated by positive wages in Armenia. Depreciated real exchange rate forces migration costs to decline. Despite the cheap migration, migration falls as a result of the expanded employment in Armenia. The effect of depreciated real exchange rate performs over the low migration and real wages in Russia. So, real remittances are increased.

5.6. Variance decomposition

Table 5 in Appendix 5 gives forecast error variance decomposition of migration costs and migration based on the posterior mean of model’s posterior distribution. In a short run within 2 quarters, SW consumption preference shock explains about 40% variation of migration costs. This contribution becomes higher later. The relative risk premium shock of Armenia against Russia drives 26% of migration costs variation in short run, and its contribution decreases to 8.7% for long horizons. Risk premium shock in
Russia also has a contribution to the variation of migration costs. Its contribution is reducing over time. On the other hand, the contribution of price mark-up and wage mark-up shocks in both countries to migration costs rises over time. Mark-up shocks together explain 15% variation in first periods. The contribution of these shocks rises over time and reaches to 32%. Effects of two monetary policy shocks are declining (from 11.5% in the first period to 2.8% in the long run horizon). Migration policy shock explains about 50% variance of migration in the first period and declines to 43.5% in the long run. Consumption preference shock explains 16% variation of migration in the first period and its contribution increases to 25% in the 20-th quarter. Another driving forces of migration are productivities shocks and demand shocks, contributions of which are decreasing over time. Risk premium and consumption preference shocks in Russia influence on the migration variation by 3%.

Table 6 provides variance decomposition of Armenian employment and real remittances. The main driving force of employment in Armenia is the productivity shock, which contribution is calculated to 43%. Consumption preference and demand shock explain about 20% variation of employment. Another important shocks are risk premium and monetary policy shocks, which contribute to the 20% variation of employment. Russian structural shocks (consumption preference and risk premium) explain about 10% of the forecast error variance of Armenian employment in the first quarter. Their contribution rises to 13% in the long run. The important driving forces of the variance of real remittances are SW internal risk premium, the relative risk premium of Armenia to Russia and political factor shocks. The contribution of last two shocks decreases from 30% in the first quarter to 17% in the 20-th quarter. As one can see, the contribution of political shock on remittances is declining significantly compared to its decreasing effect on migration. On the other hand, effects of mark-up shocks on remittances are increasing over time. Price mark-up of domestically produced and wage mark-up shocks in Russia explain more than 16% variation of remittances.
As shown in Table 7, the main contributing forces of real wage variation in Armenia are price mark-up and wage mark-up shocks, which together explain more than 85% of the Armenian real wage’s variation. The impact of Russian structural shocks (consumption preference and risk premium) on the variation of Armenian real wages increases from 2.5% in the first quarter to 6% in the 100-th quarter. On the other hand, mark-up shocks drive 90% of the variation of Russian real wages in the first period. Their contribution decreases to 60% over time. Demand shock (consumption preference) becomes a dominant driver of real wages in the long run.

Table 8 reports forecast error variance decomposition of nominal wages in Armenia and Russia. The variation of Armenian nominal wage is mostly driven by wage mark-up shock, which contribution stays higher than 58% during the whole simulation period. The remaining Armenian structural shocks explain a significant value of variance. The contribution of Russian structural shocks is calculated to 10%. In Russia, the 75% variation of nominal wage is driven by wage mark-up shock in the first period. The contribution of it decreases to 54% in the long run. Other significant forces of Russian nominal wage variation are risk premium and productivity shocks, which together explain more than 28% of the variation in the 20-th quarter.

As shown in Table 9, employment of Russian tradable sector is mostly determined by productivity shock in tradable sector in a short run. Its contribution to the variation of employment decreases to 13.8% in the long run. On the other hand, the contribution of domestically produced tradable good price mark-up shock increases from 29% to 60%. Another important driving forces of Russian tradable sector’s employment are consumption preference and risk premium shocks. Shocks from the rest of the world explain about 9.5% variation in the first period. The 63% variation of non-tradable sector’s employment is governed by consumption preference shock and productivity shock in the non-tradable sector during the whole period. The effect of risk premium shock decreases from 17% to 11%. Another important shocks are monetary policy and foreign shocks.
6. Conclusion

This paper develops the DSGE model with the migration of labor force from Armenia to Russia. The model is based on New Keynesian framework with the imperfect mobility of labor across countries. The imperfect mobility is discussed by introducing migration costs. Because Russia is the main destination country for Armenian migrants, equations, characterizing the Russian economy, are derived from microeconomic foundations to better understand the transmission mechanism of Russian structural shocks to the Armenian migration and real remittances.

The resulting model is estimated by Bayesian technique, using Armenian and Russian macroeconomic series from the first quarter of 2003 to the second quarter of 2015. Posterior distributions of the model parameters are got by running the Metropolis-Hastings algorithm. Overall, the diagnostic measures of the estimation show that the estimation quality is quite well.

A number of key results emerge from the analysis. First, the volatility of migration is based more on extensive margin. On the other hand, the volatility of Armenian employment is explained by an intensive margin. Secondly, the disutility of the Armenian households from supplying the labor in Russia is lower compared to working in home. Thirdly, the model estimates the unobserved political factor, which is in line with the Russian migration policy and explains a large part of the Armenian migration volatility. Fourthly, impulse responses analysis show that the real exchange rate of Armenian dram to Russian ruble plays a significant role in the transmission mechanism of structural shocks on the migration and real remittances. Fifthly, the estimation points that the significant forces of the decline of migration in 2009 were the cut of work permissions in Russia, the negative productivity shock in Armenia and the positive risk premium shock in Russia. The second huge decline of migration took place during the recent Russian crisis, which was mostly driven by negative internal risk premium shock in Armenia (Smets-Wouters
consumption preference shock), negative wage mark-up shock in Russia and positive risk premium shock in Russia. The Smets-Wouters shock plays a significant role in driving the business cycle, which would be a good topic for further research by constructing the model with financial frictions for the Armenian economy. Finally, historical decomposition of the model generated real remittances data and conditional variance decomposition point out that all the shocks of the model impact on real remittances volatility directly, which is a good instrument to study real remittances fluctuations deeply.

The estimated model replicates Armenian and Russian macroeconomic data. Moreover, the estimated structural shocks of the model capture the main stylized facts and historical events of Armenian and Russian economies. Historical simulations show that the model is able to forecast the main variables of Armenian and Russian labor markets.
Appendix 1. Log-linearized model equations

Armenian block of the model

1. Marginal rate of substitution between consumption and labor
\[mrs_t^{arm} = c_t^{arm} + \varphi_{arm} n_t^{arm} \]

2. Consumption Euler equation with international risk sharing condition
\[c_t^{arm} = c_{t+1}^{rus} + q_{t+1}^{arm} - (r_t^{arm} - \pi_t^{arm} + \epsilon_t^{arm}) \]

3. Uncovered interest parity
\[r_t^{arm} = r_t^{rus} + \Delta e_{t+1}^{arm} + \epsilon_{t+1}^{arm} \]

4. Terms of trade
\[s_t^{arm} - s_{t-1}^{arm} = \pi_{H,t}^{arm} - \pi_{F,t}^{arm} \]

5. Deviation from the law of one price
\[\psi_t^{arm} - \psi_{t-1}^{arm} = \Delta e_t^{arm} + \pi_t^{rus} - \pi_t^{arm} \]

6. Real exchange rate
\[q_t^{arm} = \psi_t^{arm} - (1 - \gamma_t) s_t^{arm} \]

7. Production function
\[\gamma_t^{arm} = a_t^{arm} + (1 - \alpha_t) n_t^{arm} \]

8. Real marginal cost
\[mc_t^{arm} = w_{r,t}^{arm} + \alpha_1 n_t^{arm} - \gamma_1 s_t^{arm} - a_t^{arm} \]

9. New Keynesian Phillips curve for home produced goods
\[\pi_{H,t}^{arm} = \beta \pi_{H,t+1}^{arm} + \lambda^{arm} mc_t^{arm} + \epsilon_{\pi_{H,t}} \]
10. New Keynesian Phillips curve for importers

\[\pi_{t,arm}^F = \beta \pi_{t+1,arm}^F + \lambda_{t,arm}^F \psi_t + \epsilon_{\pi,t,arm} \]

11. Consumption price index inflation

\[\pi_t^{arm} = (1 - \gamma_1) \pi_{t,arm}^H + \gamma_1 \pi_{t,arm}^F \]

12. New Keynesian wage inflation equation

\[\pi_{t,arm}^W = \beta \pi_{t+1,arm}^W - \lambda_{t,arm}^W (w_{t,arm} - mrs_{t,arm}) + \epsilon_{\pi,arm} \]

13. Real wage

\[w_{t,arm} = w_{t-1,arm} + \pi_{t,arm}^W - \pi_t \]

14. Migration equation

\[n_t^m = -\frac{1}{\chi_m \varphi_m} \left(1 + \frac{COST^{SS}}{C^{SS}} \right) cost_t - \frac{\pi_{t,arm}^W}{\varphi_m} n_t^arm - \frac{COST^{SS} POLITICS^{SS}}{\chi_m C^{SS}} politics_t \]

15. Demand for home produced goods

\[c_{t,arm}^H = -\eta_1 s_t^{arm} + c_t^{arm} \]

16. Demand for imported goods

\[c_{t,arm}^F = \eta_1 (1 - \gamma_1) s_t^{arm} + c_t^{arm} \]

17. Market clearing condition

\[y_t^{arm} = (1 - \gamma_1) C^{SS} (c_t^{arm} - \eta_1 s_t^{arm}) + COST^{SS} N_M^{SS} (cost_t + n_t^m) + \epsilon_{\pi,t,arm} \]

18. Taylor rule

\[r_t^{arm} = \rho_r r_{t-1}^{arm} + (1 - \rho_r^{arm}) (\mu_{t,arm}^{\pi,arm} + \mu_{t+1,arm}^{\pi,arm} + \sigma_{t,arm}) \]
19. Migration costs

\[\text{cost}_t = w_{r,t}^{\text{arm}} - w_{r,t}^{\text{rus}} - q_t^{\text{arm}} \]

20. Real remittances equation

\[tr_t = n_t^m + w_{r,t}^{\text{rus}} + q_t^{\text{arm}} \]

21. Consumption preference shock

\[\varepsilon_{C,t}^{\text{arm}} = \rho_{C}^{\text{arm}} \varepsilon_{C,t-1}^{\text{arm}} + \sigma_{C,t}^{\text{arm}} \]

22. Risk premium shock

\[\varepsilon_{\text{prem},t}^{\text{arm}} = \rho_{\text{prem}}^{\text{arm}} \varepsilon_{\text{prem},t-1}^{\text{arm}} + \sigma_{\text{prem},t}^{\text{arm}} \]

23. Productivity shock

\[a_{t}^{\text{arm}} = \rho_{a}^{\text{arm}} a_{t-1}^{\text{arm}} + \sigma_{a,t}^{\text{arm}} \]

24. Price mark-up shock of home produced goods

\[\varepsilon_{\pi_H,t}^{\text{arm}} = \rho_{\pi_H}^{\text{arm}} \varepsilon_{\pi_H,t-1}^{\text{arm}} + \sigma_{\pi_H,t}^{\text{arm}} \]

25. Price mark-up shock of imported goods

\[\varepsilon_{\pi_F,t}^{\text{arm}} = \rho_{\pi_F}^{\text{arm}} \varepsilon_{\pi_F,t-1}^{\text{arm}} + \sigma_{\pi_F,t}^{\text{arm}} \]

26. Wage mark-up shock

\[\varepsilon_{\pi_W,t}^{\text{arm}} = \rho_{\pi_W}^{\text{arm}} \varepsilon_{\pi_W,t-1}^{\text{arm}} + \sigma_{\pi_W,t}^{\text{arm}} \]

27. Migration legislation shock

\[\text{politics}_t = \rho_{\text{politics}}^{\text{politics}} \text{politics}_{t-1} + \sigma_{\text{politics},t} \]

28. Demand shock

\[\varepsilon_{Y,t}^{\text{arm}} = \rho_{Y}^{\text{arm}} \varepsilon_{Y,t-1} + \sigma_{Y,t}^{\text{arm}} \]
Russian block of the model

29. Marginal rate of substitution

\[mrs_t^{rus} = c_t^{rus} + (\varphi_{rus} n_t^{rus} + \varepsilon_{N,t}^{rus}) \]

30. Employment of Russian households

\[n_t^{rus} = (1 - \gamma_4)n_{T,t}^{rus} + \gamma_4 n_{NT,t}^{rus} \]

31. Uncovered interest parity

\[r_t^{rus} = r_t^* + \Delta e_t^{rus} + \varepsilon_{prem,t}^{rus} \]

32. Consumption Euler equation with international risk sharing condition

\[c_t^{rus} = y_{t+1}^* + q_{t+1}^{rus} - (r_t^{rus} - \pi_t^{rus} + \varepsilon_{C,t}^{rus}) \]

33. Deviation from the law of one price

\[\psi_t^{rus} - \psi_{t-1}^{rus} = \Delta e_t^{rus} + \pi_t^* - \pi_{F,t}^{rus} \]

34. Terms of trade

\[s_t^{rus} - s_{t-1}^{rus} = \pi_{H,t}^{rus} - \pi_{F,t}^{rus} \]

35. Internal exchange rate

\[s_t^{rus} - s_{t-1}^{rus} = \pi_{H,t}^{rus} - \pi_{NT,t}^{rus} \]

36. Real effective exchange rate

\[q_t^{rus} = \psi_t^{rus} - (1 - \gamma_3 + \gamma_2 \gamma_3) s_t^{rus} - \gamma_2 s_{1,t}^{rus} \]

37. Production function of tradable sector

\[y_t^{rus} = a_t^{rus} + (1 - \alpha_2)n_{T,t}^{rus} \]

38. Real marginal cost in tradable sector

\[mc_t^{rus} = w_t^{rus} - \gamma_3 (1 - \gamma_2) s_t^{rus} + \gamma_2 s_{1,t}^{rus} + \alpha_2 n_{T,t}^{rus} - a_t^{rus} \]
39. Production function of non-tradable sector
\[y_{NT,t}^{rus} = a_{NT,t}^{rus} + (1 - \alpha_3)n_{N,t}^{rus} \]

40. Employment in non-tradable sector
\[n_{N,t}^{rus} = (1 - \gamma_5)n_{NT,t}^{rus} + \gamma_5 n_t^m \]

41. Real marginal cost in non-tradable sector
\[mc_{NT,t}^{rus} = w_t^{rus} - \gamma_3(1 - \gamma_2)s_t^{rus} - (1 - \gamma_2)s_t^{rus} + \alpha_3 n_{N,t}^{rus} - a_{NT,t}^{rus} \]

42. New Keynesian Phillips curve for home produced tradable goods
\[\pi_{H,t}^{rus} = \beta \pi_{H,t+1}^{rus} + \lambda_{H}^{rus} mc_{T,t}^{rus} + \epsilon_{H,t}^{rus} \]

43. New Keynesian Phillips curve for non-tradable goods
\[\pi_{NT,t}^{rus} = \beta \pi_{NT,t+1}^{rus} + \lambda_{NT}^{rus} mc_{NT,t}^{rus} + \epsilon_{NT,t}^{rus} \]

44. New Keynesian Phillips curve of importers
\[\pi_{F,t}^{rus} = \beta \pi_{F,t+1}^{rus} + \lambda_{F}^{rus} \psi_t^{rus} + \epsilon_{F,t}^{rus} \]

45. Tradable goods’ inflation equation
\[\pi_{T,t}^{rus} = (1 - \gamma_3)\pi_{H,t}^{rus} + \gamma_3 \pi_{F,t}^{rus} \]

46. Consumer price index inflation
\[\pi_t^{rus} = (1 - \gamma_2)\pi_{T,t}^{rus} + \gamma_3 \pi_{NT,t}^{rus} \]

47. New Keynesian wage inflation equation
\[\pi_{W,t}^{rus} = \beta \pi_{W,t+1}^{rus} - \lambda_{W}^{rus}(w_t^{rus} - mrs_t^{rus}) + \epsilon_{W,t}^{rus} \]

48. Real wage
\[w_t^{rus} = w_{t-1}^{rus} + \pi_{W,t}^{rus} - \pi_t^{rus} \]
49. Demand of Russian households for home produced tradable goods

\[c_{H,t}^{rus} = -\gamma_3 (\eta_3 - \eta_2 \gamma_2) s_t^{rus} + \eta_2 \gamma_2 s_{l,t}^{rus} + c_{l,t}^{rus} \]

50. Russian export

\[y_{EX,t}^{rus} = -\eta_3 \gamma_3 (1 - \gamma_2) s_t^{rus} + \eta_3 \gamma_2 s_{l,t}^{rus} + \eta_3 q_t^{rus} + \gamma_t^* \]

51. Demand of Russian households for non-tradable goods

\[c_{NT,t}^{rus} = -\eta_2 \gamma_3 (1 - \gamma_2) s_t^{rus} - \eta_2 (1 - \gamma_2) s_{l,t}^{rus} + c_{l,t}^{rus} \]

52. All produced non-tradable goods are consumed by Russian households

\[c_{NT,t}^{rus} = y_{NT,t}^{rus} \]

53. Home produced tradable goods are consumed by Russian and foreign households

\[y_{H,t}^{rus} = (1 - \gamma_6) c_{H,t}^{rus} + \gamma_6 y_{EX,t}^{rus} \]

54. Market clearing condition

\[y_{t}^{rus} = (1 - \gamma_7) y_{H,t}^{rus} + \gamma_7 y_{NT,t}^{rus} \]

55. Taylor rule

\[r_t^{rus} = \rho_t r_{t-1}^{rus} + (1 - \rho_t) (\mu_t^{rus} \pi_{t+1}^{rus} + \mu_y^{rus} y_{t+1}^{rus}) + \sigma_{r,t}^{rus} \]

56. Labor supply shock

\[\varepsilon_{N,t}^{rus} = \rho_N \varepsilon_{N,t-1}^{rus} + \sigma_{N,t}^{rus} \]

57. Risk premium shock

\[\varepsilon_{prem,t}^{rus} = \rho_{prem} \varepsilon_{prem,t-1}^{rus} + \sigma_{prem,t}^{rus} \]

58. Consumption preference shock

\[\varepsilon_{C,t}^{rus} = \rho_C \varepsilon_{C,t-1}^{rus} + \sigma_{C,t}^{rus} \]
59. Productivity in tradable sector

\[a_{TR,t} = \rho_{a_{TR}} a_{TR,t-1} + \sigma_{a_{TR},t} \]

60. Productivity in non-tradable sector

\[a_{NT,t} = \rho_{a_{NT}} a_{NT,t-1} + \sigma_{a_{NT},t} \]

61. Price mark-up shock of home produced tradable goods

\[\varepsilon_{r}^{rus} = \rho_{\varepsilon_{r}} \varepsilon_{r,t-1} + \sigma_{\varepsilon_{r},t} \]

62. Price mark-up shock of non-tradable goods

\[\varepsilon_{r}^{NT} = \rho_{\varepsilon_{r}^{NT}} \varepsilon_{r,t-1} + \sigma_{\varepsilon_{r}^{NT},t} \]

63. Price mark-up shock of imported goods

\[\varepsilon_{r}^{F} = \rho_{\varepsilon_{r}^{F}} \varepsilon_{r,t-1} + \sigma_{\varepsilon_{r}^{F},t} \]

64. Wage mark-up shock

\[\varepsilon_{r}^{W} = \rho_{\varepsilon_{r}^{W}} \varepsilon_{r,t-1} + \sigma_{\varepsilon_{r}^{W},t} \]

External world

65. Foreign demand

\[y^*_t = \rho_{y^*} y^*_t - 1 + \sigma_{y,t} \]

66. Foreign inflation

\[\pi^*_t = \rho_{\pi^*} \pi^*_t - 1 + \sigma_{\pi,t} \]

67. Foreign interest rate

\[r^*_t = \rho_{r^*} r^*_t - 1 + \sigma_{r,t} \]
Appendix 2. Wages in Russia

Wages in Russia by sectors expressed in ruble

Growth rate of wages in Russia by sectors

- Wages in tradable sector in Russia
- Wages in non-tradable sector in Russia

Growth rate of wages in tradable sector
- Growth rate of wages in non-tradable sector
Appendix 3.1. Observed Data and Removed Trends
Appendix 3.2. Model Input Data

- Real consumption (Arm)
- GDP (Arm)
- Interest Rate (Arm)
- Migration
- Real exchange rate of dram
- Real wage (Arm)
- Imported goods inflation (Arm)
- Home goods inflation (Arm)
- Employed (Arm)
- Real consumption (Rus)
- Output of non-tradable Sector
- Output of tradable sector
- Tradable goods inflation (Rus)
- Non-tradable goods inflation (Rus)
- Real exchange rate of rubble
- Interest rate (Rus)
- Employed in tradable sector
- Employed in non-tradable sector
- Real wage (Rus)
- Foreign output
- Foreign CPI
- Foreign interest rate

Appendix 4. Estimation Results

Table 1: Fixed parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>γ_1</td>
<td>Share of imported goods from Russia in Armenian CPI</td>
<td>0.1</td>
</tr>
<tr>
<td>α_1</td>
<td>Share of capital in production function of Armenian firms</td>
<td>0.35</td>
</tr>
<tr>
<td>C^{SS}</td>
<td>Share of private consumption in Armenian GDP</td>
<td>0.85</td>
</tr>
<tr>
<td>N^M_{SS}</td>
<td>Share of migrants in Armenian labor force</td>
<td>0.15</td>
</tr>
<tr>
<td>τ</td>
<td>Share of income that migrants spend in Russia</td>
<td>0.3</td>
</tr>
<tr>
<td>W^{ARM}_{SS}</td>
<td>Relative wages of workers</td>
<td>0.5</td>
</tr>
<tr>
<td>σ</td>
<td>Coefficient of migration costs</td>
<td>0.12</td>
</tr>
<tr>
<td>$POLITICS^{SS}$</td>
<td>Political factor</td>
<td>3</td>
</tr>
<tr>
<td>γ_2</td>
<td>Share of non-tradable goods in Russian CPI</td>
<td>0.35</td>
</tr>
<tr>
<td>γ_3</td>
<td>Share of imported goods in tradable basket of Russian household</td>
<td>0.7</td>
</tr>
<tr>
<td>γ_5</td>
<td>Share of Armenian migrants in Russian non-tradable employment</td>
<td>0.004</td>
</tr>
<tr>
<td>γ_4</td>
<td>Share of non-tradable sector’s employment in overall employment</td>
<td>0.7</td>
</tr>
<tr>
<td>γ_6</td>
<td>Share of export of Russian tradable goods</td>
<td>0.65</td>
</tr>
<tr>
<td>γ_7</td>
<td>Share of non-tradable sector in total output in Russia</td>
<td>0.6</td>
</tr>
<tr>
<td>η_1</td>
<td>Elasticity of substitution between home produced and imported goods from Russia for Armenian household</td>
<td>1.1</td>
</tr>
<tr>
<td>α_2</td>
<td>Share of capital in production function of Russian tradable sector</td>
<td>0.5</td>
</tr>
<tr>
<td>α_3</td>
<td>Share of capital in production function of Russian non-tradable sector</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Table 2: Prior and posterior distributions of structural parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Prior mean</th>
<th>Posterior mean</th>
<th>5%</th>
<th>95%</th>
<th>Prior dist.</th>
<th>Prior SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{ii}</td>
<td>0.75</td>
<td>0.86</td>
<td>0.77</td>
<td>0.97</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Price stickiness coefficient of home produced goods (Armenia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{if}</td>
<td>0.65</td>
<td>0.54</td>
<td>0.46</td>
<td>0.63</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Price stickiness coefficient of imported goods from Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{fr}</td>
<td>0.75</td>
<td>0.69</td>
<td>0.5</td>
<td>0.89</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Price stickiness coefficient of home produced tradable goods (Russia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{rr}</td>
<td>0.75</td>
<td>0.82</td>
<td>0.74</td>
<td>0.89</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Price stickiness coefficient of imported goods (Russia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{f}</td>
<td>0.65</td>
<td>0.67</td>
<td>0.58</td>
<td>0.76</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>X_m</td>
<td>1.3</td>
<td>0.7</td>
<td>0.44</td>
<td>0.96</td>
<td>Gamma</td>
<td>0.35</td>
</tr>
<tr>
<td>Relative disutility working as a migrant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{w}</td>
<td>0.75</td>
<td>0.79</td>
<td>0.68</td>
<td>0.89</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Stickiness coefficient of wages in Armenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{wr}</td>
<td>0.75</td>
<td>0.62</td>
<td>0.51</td>
<td>0.72</td>
<td>Beta</td>
<td>0.15</td>
</tr>
<tr>
<td>Stickiness coefficient of wages in Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_{arm}</td>
<td>2.0</td>
<td>1.28</td>
<td>0.85</td>
<td>1.71</td>
<td>Gamma</td>
<td>0.4</td>
</tr>
<tr>
<td>Inverse of the elasticity of labor supply with wage for Armenian households</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_{m}</td>
<td>2.0</td>
<td>2.81</td>
<td>2.13</td>
<td>3.48</td>
<td>Gamma</td>
<td>0.4</td>
</tr>
<tr>
<td>Inverse of the elasticity of labor supply with wage for Armenian migrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_{rus}</td>
<td>2.0</td>
<td>1.9</td>
<td>1.26</td>
<td>2.51</td>
<td>Gamma</td>
<td>0.4</td>
</tr>
<tr>
<td>Inverse of the elasticity of labor supply with wage for Russian households</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ_{w}</td>
<td>4.0</td>
<td>3.89</td>
<td>3.11</td>
<td>4.70</td>
<td>Gamma</td>
<td>0.5</td>
</tr>
<tr>
<td>Elasticity of substitution between varieties of labor in Armenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ_{wr}</td>
<td>4.0</td>
<td>3.76</td>
<td>2.97</td>
<td>4.53</td>
<td>Gamma</td>
<td>0.5</td>
</tr>
<tr>
<td>Elasticity of substitution between varieties of labor in Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_2</td>
<td>1.4</td>
<td>1.03</td>
<td>0.78</td>
<td>1.26</td>
<td>Gamma</td>
<td>0.25</td>
</tr>
<tr>
<td>Elasticity of substitution between tradable and non-tradable goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_3</td>
<td>1.4</td>
<td>0.56</td>
<td>0.42</td>
<td>0.71</td>
<td>Gamma</td>
<td>0.25</td>
</tr>
<tr>
<td>Elasticity of substitution between home produced and imported goods for Russian household</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{arm}</td>
<td>0.6</td>
<td>0.67</td>
<td>0.58</td>
<td>0.76</td>
<td>Beta</td>
<td>0.2</td>
</tr>
<tr>
<td>Persistence coefficient of interest rate in Armenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{fr}</td>
<td>0.6</td>
<td>0.46</td>
<td>0.38</td>
<td>0.55</td>
<td>Beta</td>
<td>0.2</td>
</tr>
<tr>
<td>Persistence coefficient of interest rate in Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{r}</td>
<td>1.5</td>
<td>1.45</td>
<td>1.13</td>
<td>1.75</td>
<td>Gamma</td>
<td>0.25</td>
</tr>
<tr>
<td>Reaction of interest rate to inflation expectations in a Taylor rule of Armenian Central Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{fr}</td>
<td>1.5</td>
<td>1.78</td>
<td>1.5</td>
<td>2.05</td>
<td>Gamma</td>
<td>0.25</td>
</tr>
<tr>
<td>Reaction of interest rate to inflation expectations in a Taylor rule of Russian Central Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{y}</td>
<td>0.5</td>
<td>0.59</td>
<td>0.44</td>
<td>0.73</td>
<td>Gamma</td>
<td>0.1</td>
</tr>
<tr>
<td>Reaction of interest rate to future output gap in a Taylor rule of Armenian Central Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{y}</td>
<td>0.5</td>
<td>0.59</td>
<td>0.46</td>
<td>0.72</td>
<td>Gamma</td>
<td>0.1</td>
</tr>
<tr>
<td>Reaction of interest rate to future output gap in a Taylor rule of Russian Central Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Prior and posterior distribution of autoregressive parameters of the shocks

<table>
<thead>
<tr>
<th>Description</th>
<th>Prior mean</th>
<th>Posterior mean</th>
<th>5%</th>
<th>95%</th>
<th>Prior dist.</th>
<th>Prior SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_{c,\text{arm}}$ Consumption preference (Armenia)</td>
<td>0.72</td>
<td>0.85</td>
<td>0.79</td>
<td>0.92</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{p,\text{prem}}$ Risk premium (Armenia)</td>
<td>0.72</td>
<td>0.76</td>
<td>0.67</td>
<td>0.86</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_{u} Productivity (Armenia)</td>
<td>0.72</td>
<td>0.64</td>
<td>0.53</td>
<td>0.75</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods (Armenia)</td>
<td>0.72</td>
<td>0.6</td>
<td>0.49</td>
<td>0.72</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Price mark-up of imported goods from Politics (Armenia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho_{p,\text{prem}}$ Wage mark-up (Armenia)</td>
<td>0.72</td>
<td>0.62</td>
<td>0.49</td>
<td>0.74</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_{politics} Political factor</td>
<td>0.72</td>
<td>0.73</td>
<td>0.62</td>
<td>0.85</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{y,\text{arm}}$ Demand (Armenia)</td>
<td>0.72</td>
<td>0.59</td>
<td>0.47</td>
<td>0.71</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_{rus} Consumption preference (Russia)</td>
<td>0.72</td>
<td>0.88</td>
<td>0.82</td>
<td>0.95</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{\text{prem,\text{rus}}}$ Risk premium (Russia)</td>
<td>0.72</td>
<td>0.83</td>
<td>0.77</td>
<td>0.89</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{\text{N,\text{rus}}}$ Labor supply (Russia)</td>
<td>0.72</td>
<td>0.70</td>
<td>0.54</td>
<td>0.86</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{\alpha,\text{\text{rus}}}$ Productivity in tradable sector (Russia)</td>
<td>0.72</td>
<td>0.78</td>
<td>0.67</td>
<td>0.90</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Productivity in non-tradable sector (Russia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho_{\text{\text{rus,},\text{XT}}}$ Price mark-up of domestically produced tradable goods (Russia)</td>
<td>0.72</td>
<td>0.86</td>
<td>0.81</td>
<td>0.93</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Price mark-up of domestically produced non-tradable goods (Russia)</td>
<td>0.72</td>
<td>0.67</td>
<td>0.56</td>
<td>0.79</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Price mark-up of imported goods (Russia)</td>
<td>0.72</td>
<td>0.35</td>
<td>0.24</td>
<td>0.46</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{\text{\text{rus,},\text{w}}}$ Wage mark-up (Russia)</td>
<td>0.72</td>
<td>0.53</td>
<td>0.42</td>
<td>0.64</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_{y} Foreign demand</td>
<td>0.72</td>
<td>0.85</td>
<td>0.77</td>
<td>0.93</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>$\rho_{\text{\text{e}}}$ Foreign inflation</td>
<td>0.72</td>
<td>0.78</td>
<td>0.69</td>
<td>0.86</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_{i} Foreign interest rate</td>
<td>0.72</td>
<td>0.71</td>
<td>0.62</td>
<td>0.80</td>
<td>Beta</td>
<td>0.1</td>
</tr>
<tr>
<td>Description</td>
<td>Prior mean</td>
<td>Posterior mean</td>
<td>5%</td>
<td>95%</td>
<td>Prior dist.</td>
<td>Prior SD</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>σ_{arm}^c</td>
<td>3.2</td>
<td>3.71</td>
<td>3.03</td>
<td>4.35</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>σ_{prem}^c</td>
<td>0.5</td>
<td>0.93</td>
<td>0.63</td>
<td>1.21</td>
<td>Inv. Gamma</td>
<td>2.0</td>
</tr>
<tr>
<td>σ_{arm}^m</td>
<td>0.9</td>
<td>0.8</td>
<td>0.66</td>
<td>0.94</td>
<td>Inv. Gamma</td>
<td>3.0</td>
</tr>
<tr>
<td>σ_a</td>
<td>1.2</td>
<td>2.48</td>
<td>1.98</td>
<td>2.96</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods</td>
<td>1.4</td>
<td>0.52</td>
<td>0.36</td>
<td>0.67</td>
<td>Inv. Gamma</td>
<td>5.0</td>
</tr>
<tr>
<td>$\sigma_{arm}^\pi_H$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price mark-up of imported goods from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>3.8</td>
<td>2.43</td>
<td>1.71</td>
<td>3.13</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>σ_{prem}^π</td>
<td>1.3</td>
<td>0.55</td>
<td>0.41</td>
<td>0.7</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>$\sigma_{politics}$</td>
<td>3.1</td>
<td>4.33</td>
<td>3.09</td>
<td>5.55</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>γ</td>
<td>2.7</td>
<td>1.94</td>
<td>1.63</td>
<td>2.25</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>$\sigma_{c_rus}^c$</td>
<td>3.2</td>
<td>3.18</td>
<td>2.61</td>
<td>3.72</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>σ_{prem}^{rus}</td>
<td>1.2</td>
<td>0.75</td>
<td>0.54</td>
<td>0.94</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>σ_{arm}^{rus}</td>
<td>1.2</td>
<td>0.47</td>
<td>0.33</td>
<td>0.61</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>$\sigma_N^N_rus$</td>
<td>2.2</td>
<td>1.77</td>
<td>0.54</td>
<td>3.14</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>$\sigma_{arm}^\pi_rus$</td>
<td>1.5</td>
<td>1.46</td>
<td>1.19</td>
<td>1.72</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>σ_{NNT}^{rus}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity in tradable sector (Russia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{prem}^{rus}</td>
<td>0.5</td>
<td>1.39</td>
<td>1.13</td>
<td>1.66</td>
<td>Inv. Gamma</td>
<td>2.0</td>
</tr>
<tr>
<td>σ_{arm}^{rus}</td>
<td>1.7</td>
<td>2.53</td>
<td>1.36</td>
<td>3.63</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>σ_{NT}^{rus}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity in non-tradable sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{prem}^{rus}</td>
<td>0.8</td>
<td>0.31</td>
<td>0.22</td>
<td>0.41</td>
<td>Inv. Gamma</td>
<td>3.0</td>
</tr>
<tr>
<td>σ_{arm}^{rus}</td>
<td>1.2</td>
<td>2.48</td>
<td>1.6</td>
<td>3.36</td>
<td>Inv. Gamma</td>
<td>4.0</td>
</tr>
<tr>
<td>σ_{NT}^{rus}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price mark-up of imported goods (Russia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage mark-up (Russia)</td>
<td>2.1</td>
<td>0.65</td>
<td>0.49</td>
<td>0.81</td>
<td>Inv. Gamma</td>
<td>6.0</td>
</tr>
<tr>
<td>σ_y</td>
<td>0.9</td>
<td>0.47</td>
<td>0.39</td>
<td>0.55</td>
<td>Inv. Gamma</td>
<td>3.0</td>
</tr>
<tr>
<td>σ_n</td>
<td>0.5</td>
<td>0.31</td>
<td>0.26</td>
<td>0.36</td>
<td>Inv. Gamma</td>
<td>2.0</td>
</tr>
<tr>
<td>σ_c^c</td>
<td>0.4</td>
<td>0.48</td>
<td>0.4</td>
<td>0.56</td>
<td>Inv. Gamma</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Figure 4.1. Prior and posterior densities
Figure 4.2. Multivariate convergence diagnostic
Appendix 5. Model Properties

Figure 5.1. Observed and model generated data
Figure 5.2. Estimated structural shocks of the model
Figure 5.3. Migration policy of Russian Federation (estimated political factor)
Figure 5.4. Generation of real remittances data
Figure 5.5. Historical simulations (migration, real wages in Armenia and Russia, employment in Armenia)
Figure 5.6. Historical simulations (real exchange rate of Armenian dram to Russian ruble, ruble real effective exchange rate, interest rates in Armenia and Russia)
Figure 5.7. Historical decomposition of migration

Figure 5.8. Historical decomposition of migration costs
Figure 5.11. Historical decomposition of Russian real wage
Figure 5.12. Impulse responses to a consumption preference shock in Armenia

Figure 5.13. Impulse responses to a risk premium shock in Armenia
Figure 5.14. Impulse responses to a productivity shock in Armenia

Figure 5.15. Impulse responses to a demand shock in Armenia
Figure 5.16. Impulse responses to a monetary policy shock in Armenia

Figure 5.17. Impulse responses to a home produced goods price mark-up shock in Armenia
Figure 5.18. Impulse responses to an imported goods price mark-up shock in Armenia

Figure 5.19. Impulse responses to a wage mark-up shock in Armenia
Figure 5.20. Impulse responses to a consumption preference shock in Russia

- Cons. preference shock (Rus)
- Consumption (Rus)
- Employment (Rus)
- Output (non-trad. sector)
- Employment (non-trad. sector)
- Home consum. (trad. goods)
- Consum. (non-trad. goods)
- Output (Rus)
- Interest rate (Rus)
- Change of nom.ex.rate (Rus)
- LOP gap (Rus)
- Imported inflation (Rus)
- Terms of trade (Rus)
- Real exch. rate (Rus)
- Russian export
- Output (trad. sector)
- Employment (trad. sector)
- MC (trad. sector)
- Home inflation (trad. goods)
- Inflation (non-trad. good)
- Inflation (non-trad. good)
- Inflation (Rus)
- MRS (Rus)
- Nominal wage (Rus)
- Real wage (Rus)
- LOP gap (Arm)
- Imported inflation (Arm)
- Terms of trade (Arm)
- Real exch. rate (Arm)
- Consumption (Arm)
- Employment (Arm)
- Output (Arm)
- Marginal cost (Arm)
- Home good inflation (Arm)
- Change of nom.ex rate (Arm)
- MRS (Arm)
- Nominal wage (Arm)
- Real wage (Arm)
- Migration costs
- Migration
- Real remittances
Figure 5.21. Impulse responses to a labor supply shock in Russia
Figure 5.22. Impulse responses to a risk premium shock in Russia
Figure 5.23. Impulse responses to a productivity shock of tradable sector in Russia
Figure 5.24. Impulse responses to a productivity shock of non-tradable sector in Russia
Figure 5.25. Impulse responses to a monetary policy shock in Russia
Figure 5.26. Impulse responses to a home produced tradable goods price mark-up shock in Russia
Figure 5.27. Impulse responses to a non-tradable goods price mark-up shock in Russia
Figure 5.28. Impulse responses to an imported goods price mark-up shock in Russia
Figure 5.29. Impulse responses to a wage mark-up shock in Russia
Figure 5.30. Impulse responses to a foreign demand shock
Figure 5.31. Impulse responses to a foreign interest rate shock
<table>
<thead>
<tr>
<th></th>
<th>Migration costs</th>
<th>Migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{arm_c})</td>
<td>Disturbance</td>
<td>1Q 2Q 4Q 20Q 100Q 1Q 2Q 4Q 20Q 100Q</td>
</tr>
<tr>
<td>Consumption preference (Armenia)</td>
<td>38.84 42.41 45.18 49.86 49.98 16.03 18.00 20.84 25.47 25.54</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{prem}})</td>
<td>Risk premium (Armenia)</td>
<td>26.06 19.94 13.49 8.69 8.66 0.28 0.24 0.21 0.20 0.20</td>
</tr>
<tr>
<td>(\sigma_{arm_f})</td>
<td>Monetary policy (Armenia)</td>
<td>9.85 6.57 3.92 2.48 2.47 1.37 1.22 1.06 0.93 0.93</td>
</tr>
<tr>
<td>(\sigma_{arm_{r}})</td>
<td>Productivity (Armenia)</td>
<td>0.02 0.12 0.25 0.27 0.27 19.09 17.65 15.67 13.66 13.65</td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods (Armenia)</td>
<td>3.79 4.12 4.96 6.17 6.15 0.24 0.78 1.68 2.43 2.43</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Price mark-up of imported goods from Russia</td>
<td>0.27 0.29 0.33 0.32 0.32 0.02 0.06 0.10 0.11 0.11</td>
</tr>
<tr>
<td>Wage mark-up (Armenia)</td>
<td>3.21 6.10 9.53 11.01 10.98 0.47 0.81 1.36 1.88 1.88</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Political factor</td>
<td>0.00 0.00 0.00 0.00 0.00 49.17 48.93 47.28 43.55 43.51</td>
</tr>
<tr>
<td>Demand (Armenia)</td>
<td>2.90 2.70 2.11 1.40 1.39 8.57 7.23 5.88 4.96 4.96</td>
<td></td>
</tr>
<tr>
<td>Consumption preference (Russia)</td>
<td>0.09 0.05 0.05 0.35 0.37 1.45 1.36 1.23 1.08 1.08</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Risk premium (Russia)</td>
<td>3.10 2.67 1.91 1.23 1.22 1.61 1.43 1.30 1.28 1.28</td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Monetary policy (Russia)</td>
<td>1.65 1.02 0.60 0.38 0.38 0.20 0.14 0.11 0.09 0.09</td>
</tr>
<tr>
<td>Labor supply (Russia)</td>
<td>0.01 0.03 0.04 0.05 0.05 0.00 0.00 0.01 0.01 0.01</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Productivity in tradable sector (Russia)</td>
<td>0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.01</td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Productivity in non-tradable sector (Russia)</td>
<td>0.09 0.18 0.27 0.27 0.27 0.01 0.03 0.05 0.07 0.07</td>
</tr>
<tr>
<td>Price mark-up of domestically produced tradable goods (Russia)</td>
<td>3.43 4.51 6.45 7.59 7.57 0.38 0.60 1.12 1.77 1.77</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Price mark-up of domestically produced non-tradable goods (Russia)</td>
<td>0.19 0.31 0.59 1.10 1.10 0.02 0.04 0.10 0.26 0.26</td>
</tr>
<tr>
<td>Price mark-up of imported goods (Russia)</td>
<td>1.70 1.98 1.94 1.38 1.38 0.20 0.27 0.34 0.32 0.32</td>
<td></td>
</tr>
<tr>
<td>Wage mark-up (Russia)</td>
<td>4.15 6.45 8.00 7.17 7.15 0.47 0.87 1.40 1.68 1.68</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Foreign demand</td>
<td>0.05 0.05 0.05 0.06 0.06 0.01 0.01 0.01 0.01 0.01</td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Foreign inflation</td>
<td>0.21 0.18 0.12 0.08 0.08 0.13 0.11 0.10 0.09 0.09</td>
</tr>
<tr>
<td>(\sigma_{arm_{f}})</td>
<td>Foreign interest rate</td>
<td>0.36 0.29 0.19 0.12 0.12 0.27 0.22 0.18 0.16 0.15</td>
</tr>
</tbody>
</table>
Table 6: Conditional variance decomposition: Armenian employment and real remittances

<table>
<thead>
<tr>
<th></th>
<th>Employment (Arm)</th>
<th>Real remittances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q</td>
<td>2Q</td>
</tr>
<tr>
<td>σ_{arm}^c</td>
<td>8.35</td>
<td>9.08</td>
</tr>
<tr>
<td>Consumption preference (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{arm}^{prem}</td>
<td>11.65</td>
<td>11.67</td>
</tr>
<tr>
<td>Risk premium (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{arm}^m</td>
<td>11.45</td>
<td>10.78</td>
</tr>
<tr>
<td>Monetary policy (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{arm}^a</td>
<td>42.98</td>
<td>43.54</td>
</tr>
<tr>
<td>Productivity (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{arm}^{nt,m}$</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{arm}^{nt,F}$</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Price mark-up of imported goods from Russia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{arm}^{W}</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Wage mark-up (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{psych}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Political factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{arm}^{y}</td>
<td>12.77</td>
<td>11.44</td>
</tr>
<tr>
<td>Demand (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^c</td>
<td>2.82</td>
<td>3.07</td>
</tr>
<tr>
<td>Consumption preference (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^{prem}</td>
<td>8.00</td>
<td>8.31</td>
</tr>
<tr>
<td>Risk premium (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^{m}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Monetary policy (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^{N}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Labor supply (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^{y}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Productivity in tradable sector (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{rus}^{a,NT}$</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Productivity in non-tradable sector (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{rus}^{nt,m}$</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Price mark-up of domestically produced tradable goods (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{rus}^{nt,F}$</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Price mark-up of domestically produced non-tradable goods (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{rus}^{W}</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Wage mark-up (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{y}</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Foreign demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{i}</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Foreign inflation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{i}</td>
<td>1.21</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Table 7: Conditional variance decomposition: Armenian and Russian real wages

<table>
<thead>
<tr>
<th></th>
<th>Real wage (Armenia)</th>
<th>Real wage (Russia)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q</td>
<td>2Q</td>
</tr>
<tr>
<td>Disturbance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_c</td>
<td>5.14</td>
<td>5.40</td>
</tr>
<tr>
<td>σ_{prem}</td>
<td>0.88</td>
<td>1.02</td>
</tr>
<tr>
<td>σ_{pol}</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Productivity (Armenia)</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>σ_{π_H}</td>
<td>37.57</td>
<td>38.01</td>
</tr>
<tr>
<td>Price mark-up of imported goods from Russia</td>
<td>3.06</td>
<td>2.77</td>
</tr>
<tr>
<td>Wage mark-up (Armenia)</td>
<td>48.55</td>
<td>47.86</td>
</tr>
<tr>
<td>Political factor</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Demand (Armenia)</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>σ_{c}</td>
<td>1.21</td>
<td>1.35</td>
</tr>
<tr>
<td>Consumption preference (Russia)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Risk premium (Russia)</td>
<td>1.24</td>
<td>1.36</td>
</tr>
<tr>
<td>σ_{pol}</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Labor supply (Russia)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Productivity in tradable sector (Russia)</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>Productivity in non-tradable sector (Russia)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Price mark-up of domestically produced tradable goods (Russia)</td>
<td>19.13</td>
<td>22.90</td>
</tr>
<tr>
<td>Price mark-up of non-tradable goods (Russia)</td>
<td>2.25</td>
<td>2.98</td>
</tr>
<tr>
<td>Price mark-up of imported goods (Russia)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Wage mark-up (Russia)</td>
<td>27.86</td>
<td>29.45</td>
</tr>
<tr>
<td>Foreign demand</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Foreign inflation</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Foreign interest rate</td>
<td>0.12</td>
<td>0.11</td>
</tr>
</tbody>
</table>

108
Table 8: Conditional variance decomposition: Armenian and Russian nominal wages

<table>
<thead>
<tr>
<th></th>
<th>Nominal wage (Armenia)</th>
<th>Nominal wage (Russia)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q</td>
<td>2Q</td>
</tr>
<tr>
<td>Disturbance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma_{c}^{arm})</td>
<td>Consumption preference (Armenia)</td>
<td>4.31</td>
</tr>
<tr>
<td>(\sigma_{pr}^{arm})</td>
<td>Risk premium (Armenia)</td>
<td>5.32</td>
</tr>
<tr>
<td>(\sigma_{m}^{arm})</td>
<td>Monetary policy (Armenia)</td>
<td>3.11</td>
</tr>
<tr>
<td>(\sigma_{a}^{arm})</td>
<td>Productivity (Armenia)</td>
<td>6.98</td>
</tr>
<tr>
<td>(\sigma_{aH}^{arm})</td>
<td>Price mark-up of domestically produced goods (Armenia)</td>
<td>3.85</td>
</tr>
<tr>
<td>(\sigma_{aF}^{arm})</td>
<td>Price mark-up of imported goods from Russia</td>
<td>0.18</td>
</tr>
<tr>
<td>(\sigma_{w}^{arm})</td>
<td>Wage mark-up (Armenia)</td>
<td>67.74</td>
</tr>
<tr>
<td>(\sigma_{.politics}^{arm})</td>
<td>Political factor</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{y}^{arm})</td>
<td>Demand (Armenia)</td>
<td>0.19</td>
</tr>
<tr>
<td>(\sigma_{c}^{rus})</td>
<td>Consumption preference (Russia)</td>
<td>2.46</td>
</tr>
<tr>
<td>(\sigma_{pr}^{rus})</td>
<td>Risk premium (Russia)</td>
<td>5.18</td>
</tr>
<tr>
<td>(\sigma_{m}^{rus})</td>
<td>Monetary policy (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{n}^{rus})</td>
<td>Labor supply (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{aT}^{rus})</td>
<td>Productivity in tradable sector (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{aNT}^{rus})</td>
<td>Productivity in non-tradable sector (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{aH}^{rus})</td>
<td>Price mark-up of domestically produced tradable goods (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{aNT}^{rus})</td>
<td>Price mark-up of domestically produced non-tradable goods (Russia)</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{w}^{rus})</td>
<td>Wage mark-up (Russia)</td>
<td>0.01</td>
</tr>
<tr>
<td>(\sigma_{n}^{y})</td>
<td>Foreign demand</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_{n}^{y})</td>
<td>Foreign inflation</td>
<td>0.05</td>
</tr>
<tr>
<td>(\sigma_{r}^{y})</td>
<td>Foreign interest rate</td>
<td>0.27</td>
</tr>
</tbody>
</table>

109
Table 9: Conditional variance decomposition: Employment in Russian tradable and non-tradable sectors

<table>
<thead>
<tr>
<th></th>
<th>Tradable sector employment</th>
<th>Non-tradable sector employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q</td>
<td>2Q</td>
</tr>
<tr>
<td>σ_{c}^{arm}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Consumption preference (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{prem}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Risk premium (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{m}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Monetary policy (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{a}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Productivity (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{prem}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Price mark-up of domestically produced goods (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{np}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Price mark-up of imported goods from Russia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{w}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Wage mark-up (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{pol}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Political factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{d}^{arm}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Demand (Armenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{c}^{rus}</td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>Consumption preference (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{prem}^{rus}</td>
<td></td>
<td>16.80</td>
</tr>
<tr>
<td>Risk premium (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{m}^{rus}</td>
<td></td>
<td>3.43</td>
</tr>
<tr>
<td>Monetary policy (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{n}^{rus}</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Labor supply (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{a}^{rus}</td>
<td></td>
<td>36.47</td>
</tr>
<tr>
<td>Productivity in tradable sector (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{aNT}^{rus}</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Productivity in non-tradable sector (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{np}^{rus}</td>
<td></td>
<td>28.99</td>
</tr>
<tr>
<td>Price mark-up of domestically produced tradable goods (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{npNT}^{rus}</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Price mark-up of domestically produced non-tradable goods (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{w}^{rus}</td>
<td></td>
<td>1.56</td>
</tr>
<tr>
<td>Price mark-up of imported goods (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{wNT}^{rus}</td>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td>Wage mark-up (Russia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{y}^{r}</td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td>Foreign demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{n}^{r}</td>
<td></td>
<td>1.96</td>
</tr>
<tr>
<td>Foreign inflation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{I}^{r}</td>
<td></td>
<td>6.39</td>
</tr>
<tr>
<td>Foreign interest rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Chortareas G, Katirtzidis K., and Tsoukalas (2008), Macroeconomic Effects of Immigration in a New Keynesian Model, School of Economics, University of Nottingham, NG7 2RD, University Park, Nottingham, United Kingdom

Del Rosario D. (2010), Monetary Policy in a Small Open Economy Model with Labor Mobility and Remittances, Master Thesis at Singapore Management University

Engler, P. (2007), Gains from Migration in a New-Keynesian Framework, mimeo, Freie Universität Berlin, Germany

Hauser D. (2014), Technology shocks, labor mobility and aggregate fluctuations, Bank of Canada working paper 2014-4

Kolasa M. (2009), Structural heterogeneity or asymmetric shocks? Poland and the euro area through the lens of a two-country DSGE model, Economic Modelling, Volume 26, Issue 6, November 2009, pp. 1245-1269

