The rapid and pronounced changes observed across the Arctic have increased strategic interest, at regional and global level, in this critical part of the Earth system. This interest centers on the economic potential of the Arctic, the recoverability of new regional resources, and the potential for northern sea-transportation routes. It also encompasses environmental concerns, the preservation of local cultures, and the potential institutional changes required for achieving sustainability. Clearly, the issue of Arctic futures presents both challenges and opportunities.

The Arctic interacts with the rest of the world in a complex manner—socially, economically, technologically, environmentally, and politically. Global socioeconomic and technological changes all contribute to changes in the Arctic climate, environment, and societies: these changes include increasing global demand for economic growth and new energy resources, a fast-growing global population, and increasing emissions of greenhouse gases and short-lived climate forcers. The Arctic is warming at twice the rate of other regions on Earth, and concomitant changes in the Arctic environment, such as the decreasing extent of sea ice, thawing permafrost, and decreasing albedo, are affecting ocean circulation, weather patterns, and the global climate system. Also at stake are accessibility to and management of resources, local livelihoods, the local and regional economy, and geopolitical concerns.

Although many research efforts have focused on the Arctic region, these remain fragmented. Because of the many dynamic and interacting drivers and pressures from global to local scale, a systems approach using appropriate integrated methodology is necessary. The different actors involved in the Arctic and their frequently differing values, as well as the diverse national strategies adopted by the countries of the Arctic themselves, must all be taken into account in this research program. Currently, there is no independent, international, integrated and systematic study exploring plausible futures for the Arctic in a qualitative and quantitative way. Moreover, there is currently no international assessment, based on an understanding of the Arctic as a system, that can help guide policy discussions among the diverse Arctic stakeholder groups in their negotiations and other decision-making processes.

The Arctic Futures Initiative is intended to fill many knowledge gaps, provide a framework for objective international science-policy discussions, and support the requisite system-level analysis of critical Arctic challenges to sustainability. The overall outcome will be a holistic, integrated assessment based on systems analysis—an Arctic integrated systems assessment—for use by public and private decision makers in the Arctic and non-Arctic nations striving for a sustainable Arctic region.
The Arctic Futures Initiative: Background

The Arctic Futures Initiative (AFI) is a five-year, new-generation research project, launched and coordinated by the International Institute for Applied Systems Analysis (IIASA), an independent organization whose work focuses on the interface between science and policy. IIASA’s major partner in the AFI is the Arctic Circle, the largest network for international dialogue and cooperation on the future of the Arctic.

AFI’s mission is to deliver decision support with options that balance environmental protection, economic prosperity, and societal wellbeing for the rapidly changing Arctic. The research is intended to support public and private policymaking in Arctic and non-Arctic countries, Arctic residents, and civil society.

The AFI builds on IIASA’s cross-cutting expertise in applied systems analysis and its global capacity to convene high-level international dialogues. IIASA has 24 National Member Organizations worldwide, including five Arctic countries and six Arctic Council observer nations.

Developed at the request of decision makers, the AFI is being planned and implemented in collaboration with partners and stakeholders. To gain stakeholders’ perspectives in developing the AFI, meetings and discussions were conducted with more than 80 representatives from science, policy, the business community, and indigenous peoples. Other active participants in AFI planning are the Arctic Economic Council, the International Arctic Science Committee, the World Wide Fund for Nature, the U.S. Arctic Research Commission, national foreign affairs ministries, and Arctia Ltd (see full list at end of document).

Integrated knowledge on plausible Arctic futures

The Arctic Futures Initiative aims to establish and execute an integrated systems assessment for the Arctic region that bridges science and decision making and is backed by sound research. It intends to produce plausible evidence-based options for Arctic development. The assessment will review the status of work on the Arctic from a systems and systems-analysis perspective. Utilizing IIASA’s expertise in systems analysis, it will encompass new and emerging work on participatory methods, foresight, agent-based and integrated modeling, and science diplomacy.

To encourage dialogue and build trust within and among communities, AFI participants are not limited to the sciences, but include representatives from policy, business, and civil society. Indeed, integrative research at the science-policy interface brings together a variety of academic disciplines (social and natural sciences, humanities and law), government, business, indigenous peoples organizations, inter-governmental organizations, non-governmental organizations and civil society. The many interactions between the Arctic region and the rest of the world make international collaboration by Arctic and non-Arctic nations a prerequisite for an initiative like the AFI.

Through its integrative systems-level approach, the systems assessment of the Arctic aims to answer the following key questions:

What are the plausible futures for the Arctic and what are the pathways to those futures? How do Arctic system “surprises”—thresholds, and unintended consequences—influence these futures, and how can they be anticipated or avoided? What information do decision makers need to make those futures sustainable? How can the myriad of potentially conflicting Arctic interests—socioeconomic, environmental, and cultural—be reconciled in the face of rapid changes in the Arctic system? How robust and future-proof are the strategic plans to develop and protect the Arctic?

The need for a systems approach

The plausible options and development pathways for the Arctic in the context of global change are determined by complex intertwined social, economic, environmental, technological, and geopolitical developments. To address them, we utilize a holistic
integrated systems approach (see section on Objectives and definitions) which is much needed, but lacking. In our holistic assessment of the Arctic, we augment traditional climate-environment studies with expert collaborative work on, for example, the social, economic, and political dimensions, in addition to including Earth’s atmosphere, ocean, and ecology. The holistic approach allows us to apply integrated and transdisciplinary methodology and to factor in the outcomes of inclusive dialogues among the different stakeholders. In this way, we are able to conduct a thorough examination of the linkages, interactions, feedbacks, synergies, and tradeoffs among the various actors, issues, sectors, and policies involved. This approach also allows us to calculate the costs of different related policy options.

It must be emphasized that AFI is not confined to simply observing the changes taking place in the Arctic climate and ecosystems—this is already present on numerous past and present research agendas. The AFI, in effect, studies the changes taking place in the environment in relation to economic, infrastructure, governance, and geopolitical developments as drivers of change in the Arctic region.

Use of the integrative multiple-beneficiary rationale enables us to show how the different issues, actors, sectors, and policies are connected and also to identify where decisions and policies made with one specific objective in mind mutually reinforce (or potentially undermine) other policy objectives. The simultaneous examination of several objectives using an integrated methodology reveals synergies across diverse policy domains with multiple benefits for a variety of stakeholders. This approach has been learned in the course of IIASA’s long experience in facilitating dialogues that are of value to policymakers. The systems approach also reveals the tradeoffs among multiple policy objectives, for example, in terms of costs, namely: resource income versus the cost of preserving indigenous culture.

Another example are climate change mitigation policies, where the main effort is directed to energy-sector emission targets. IIASA’s integrated modeling can be used to calculate economic and social benefits from policies linking energy, transportation and infrastructure, climate, air pollutants, the environment, and geopolitical uncertainties. For example, and as shown in the IIASA-led Global Energy Assessment of 2014, substantial annual savings can be made by integrating energy policies with climate, air quality, and health policies. This becomes apparent when one makes a comparison between the cost of integrated policies across sectors and the sum of the costs for each individual sector. It is found that the co-benefits of integrated modeling lead to substantial year-on-year savings.

Issues of scale

The interplay between environmental protection, societal wellbeing, and economic aspirations is a prominent contributor to global socioeconomic, socio-political, environmental, and biophysical transformations. These interactions are taking place against a background of growing anthropogenic influence—pressures due to rapid population increase and the impact of climate change, increasing geopolitical tensions, and new forms of social organization. Our world is changing very rapidly, and issues such as new technology, grand environmental challenges, artificial intelligence, influential social media, and power shifts are presenting real challenges in the form of overall insecurity, uncertainty, unpredictability, and transforming economies. Opportunities, however, also abound.

The **Arctic region** is characterized by highly variable socioeconomic trends and demographics, large cultural differences and geopolitical issues, along with tremendous natural variability and heterogeneously distributed resources. The Arctic plays a relatively large role globally in economic terms, in fact, larger than would be expected for a remote region with often-harsh environmental conditions and population of only ~4 million,
including indigenous peoples. The vast natural resources of the Arctic, including minerals, oil and gas, and biological resources such as fish, will continue to be attractive to development; these resources will become ever more closely interlinked with global energy and trade networks and trends in commodity prices and national economies elsewhere in the world. They will also feature prominently in discussions related to management of resources, national and international boundaries, and regional continental shelf submissions by the littoral Arctic states.

The Arctic region has been experiencing an economic growth rate of about twice that of the eight Arctic nations individually; there has been a trend towards institutional change, including increased local ownership of resources and privatization, with benefits often depending on how expenditures stack up against gains in global markets. The decrease in sea ice during the summer months potentially increases freight traffic on the Northern Sea Route, as well as other trans-Arctic sea routes, and may lower transport costs within the Arctic and, in the future, between Southeast Asia, Europe, and North America.

Sectoral issues

The Arctic system economy supports major sectors of importance to the region itself and to the globe. Of particular importance are **transportation (including shipping and aviation)**, trade, resources (fishing, oil, gas, and mineral extraction), tourism, and **built infrastructure**. Built infrastructure includes transportation (such as ports, waterways, roads, railways), energy (generation, transmission and distribution, storage), communication, water and sanitation, for example.

Urbanization, expansion in global **infrastructure**, and increases in consumption will require vast capital investments that will determine patterns of demand and supply for decades to come. Huge investments are anticipated for the entire Arctic region over the next decades, hence the urgency of considering how these investments will not only achieve sustainability for the region but also returns for business partners. The investment risks are perhaps even more significant than the risks from the opening up of the Arctic due to the Arctic Ocean becoming seasonally ice-free.

What type of integrated studies and coordination will be required over time in terms of sustainable investments in the Arctic? Can the options be framed around a phased investment strategy?

As with other human-environment systems planet-wide, various sectors do not function in isolation. The AFI will essentially study linkages and interactions across sectors and also global links for fisheries, forestry, food products and food security, commodities, energy, renewables and non-renewable resource extraction, transportation, trade and infrastructure; tourism and recreation; traditional livelihoods (non-commercial fisheries, reindeer husbandry, hunting, etc.), and ecosystems and biodiversity.

In light of the global interlinked transformations, what role does the Arctic play in global economic development in the short and long term, and vice versa?

A study of the impact of past, current, and potential future global economic development and trade on various sectors (including the traditional sector) and regions in the Arctic is much needed, as research on the Arctic from the integrated social-economic-environmental perspective has been lacking.

What are the options for the development of the Arctic region with respect to technological progress, economic structure, institutional change and governance, and national policies in the Arctic states, in comparison with the Arctic region as a whole?

The requisite knowledge for understanding, predicting, and reconciling the future of Arctic regional (economic) development—and how that will actually be impacted by existing and future policies and technologies, regulations, and other environmental safeguards—is either incomplete or virtually non-existent in most
areas. Systemic and integrative thinking are essential for a proper understanding of these matters.

Policy landscape

Governance in the Arctic region is a complex nested structure and characterized by particular national, legal, and political structures, as well as multiple legal and political arrangements for the indigenous peoples. An inhabitant of the Arctic region can have citizenship on municipal, regional (province, state, territory, or republic) basis, and also national citizenship, while belonging to local, regional, and national indigenous organizations endowed with legal and political power. This has led to the existence of numerous governmental and non-governmental organizations and agencies, both local and international. There is a large variety of interests to be reconciled among political and other actors.

A key issue to be dealt with in national, regional, and global strategies for sustainability and resilience is governance: governing, management, policy-shaping, and policymaking across complex social, economic, technological, environmental, and geopolitical systems all require innovative approaches that incorporate local, regional, national, and international considerations, as well as political and geopolitical interests. In a globalized and interconnected world, a fast-increasing world population drives the requirement to manage natural resources and is thus a key challenge for development towards sustainability.

Are the current international, regional, and national governance structures sufficient to meet governance needs arising in the wake of the large changes taking place in the Arctic? What kind of new governance mechanisms, and legal and political arrangements do we need for resource management for a sustainable and resilient Arctic future? How can we balance and reconcile the interests of the variety of actors from the public and private sectors? Is equitable governance/common governance an option and at what scales?

Studying the geopolitics of the Arctic, both as a whole and in terms of its individual nations, is an overarching theme of the AFI. The Arctic is a distinct world region with its own space and resources. However, the regional geopolitical picture of the Arctic also encompasses national identities, economies, environmental and climate policies, and foreign policies, as well as indigenous peoples. Non-Arctic states are also part of the geopolitics of the Arctic and have a role to play in terms of examining, observing, and predicting national and regional political behavior. Geopolitical discussions are essentially interlinked with geography, international relations, strategic and security studies, demographies, climate (change), environment and environmental policies, natural resources, economics, and technology and technological developments. New agent-based and integrated modeling approaches that examine, among other things, identity, geopolitics, economics, and international relations among the various political communities and other actors are needed to fully understand these interactions.

What is the impact of geography, geopolitics and geoeconomics, and identity politics on international politics, international relations, and international law? Can we design a conceptual framework, a model to study the dynamics and adaptive capacity of resources, governance regimes, and paradigm shifts for resilience and security, including different actors and political systems, and critical approach to geopolitics? Could this be a multi-level learning process involving informal networks and a variety of stakeholders?

Security in terms of human and environmental security within the Arctic region is being redefined in the era of globalization, with several features of traditional Arctic security still prevalent. Overall, security is impacted by increasing nation-building aspirations on the part of subnational actors and native peoples, state sovereignty, energy security, climate change, as well as changes in premises about security, high geopolitical stability, differing definitions of security by the Arctic states, and a growing number of actors defined as threats to states’ security.
What can we learn from the past, from the significant change in the state of Arctic security ranging from the confrontation of the Cold War period to more recent cooperative efforts? Are environmental degradation and climate change being redefined as affecting security, and how?

Optimal information is necessary for decision makers wishing to build and maintain diplomatic bridges between nations. This becomes particularly important at the science-diplomacy-policy interface, where sound and objective scientific findings can point bilateral and multilateral decision makers towards the best practices for shaping and making policy decisions and agreements. Science diplomacy and science brokerage have been a vital part of transactions undertaken by foreign ministries and international organizations, like the UN, for several decades. These activities are profoundly connected to the requirement for factual objectivity and evenhandedness as a basis for decision making in international affairs.

Science diplomacy is using science to build bridges between countries and to promote scientific cooperation as an essential element of foreign policy. The profile of science diplomacy is being raised, it is creating a forum for thought and analysis, and initiating bilateral activities. In the AFI, science diplomacy is an overarching tool, present in every step of the initiative.

Science diplomacy is key in terms of demonstrating how relevant science is to today’s society. Science for sustainability and peace, in particular, is a common issue for science diplomacy in terms of balancing national and common interests. Science diplomacy in the context of interplay between science, politics and business has played and continues to play an important role in and for the Arctic.

How can we educate and encourage (young) researchers from different disciplines to take into consideration, promote and implement the social relevance of science? How can we promote and support the approach of systems analysis-based holistic knowledge when implementing the interplay between science, politics and business for a sustainable and resilient Arctic? How can we educate a new generation of Arctic and global leaders with integrated skills in analytical and holistic thinking and to implement science diplomacy in practice? How can we better engage Ministries of Foreign Affairs, as well as other ministries, for to be open-minded towards and co-design science-informed policy solutions for a sustainable Arctic?

Objectives and definitions

The mission of AFI is to deliver independent decision support with options that balance environmental protection, economic prosperity, and societal wellbeing for the rapidly changing Arctic of the 21st century.

The AFI has four strategic objectives which are included in the overall aim of the holistic integrated assessment, the Arctic integrated systems assessment:

- Development of an inclusive framework and process for collaboration and cooperation;
- Production of new knowledge of plausible futures for the Arctic based on integrated systems methodology;
- Provision of practical options that contribute to informed decision-making;
- Support for capacity building and establishment of a new generation of multi-perspective, systems-level thinkers for the Arctic.

Under the AFI, a holistic approach is one that brings together a variety of stakeholders with different perspectives and from a variety of disciplinary backgrounds to use integrated methods to integrate societal, economical, technological, environmental, and geopolitical information.

The AFI definition of systems analysis includes i) establishment of a process, framework, and a problem-solving approach with partners and stakeholders to study decision makers’ options for Arctic
development for a sustainable Arctic; ii) analysis of short- and long-term options for the development of multi-scale, multi-sector, and transdisciplinary issues in the Arctic; iii) use of integrative methods with a focus on linkages, interactions, feedbacks, synergies, and tradeoffs; iv) synthesis of systems analysis process and results from integrative methods with subsequent adaptive management recommendations or iterative feedback to stakeholder communities.

The AFI will apply the strategic concepts surrounding sustainability as a “common Arctic issue” established through Arctic Council declarations. Arctic states affirmed their commitment to the well-being of the inhabitants’ sustainable development in “the protection of the Arctic environment” (Ottawa Declaration 1996) and “Reaffirming the commitment to maintain peace, stability” (Fairbanks Declaration 2017).

Why IIASA?

Over four decades, IIASA has developed expertise and integrated methodology that is applicable at the global, regional, and national scale across a wide range of interlinked issues: economy, environment, technology, geopolitics, and politics, all of which are critical options for development in the Arctic. In-house, IIASA has the capacity to investigate energy resources, climate change, environmental pollution, land use and sustainable development, transition to new technologies, risk and resilience, and population growth—all of which are at the core of the major global social, economical, technological, and institutional transformations.

Together, the capacity and the specialized methodology at hand allow IIASA to work in a **neutral, integrative, and inclusive** manner on a wide range of interlinked issues

IIASA works in partnership with the Arctic Circle, an open, democratic platform with the participation of governments, organizations, corporations, universities, think tanks, environmental associations, indigenous communities, concerned citizens, and others interested in the development of the Arctic and its consequences for the future of the globe. This **neutral platform for science diplomacy** facilitates discussions and collaboration on the Arctic, as well as the development of new integrative methods and approaches to it. Methodology developed and used by the nine in-house IIASA programs includes participatory methods, qualitative and quantitative integrated modeling, risk assessments, scenarios, simulations, and game-theoretic approaches as a means of revealing plausible futures.

In practice, the AFI applies selected methods used by IIASA programs and third parties. IIASA scientists partner with Arctic experts on the Earth system (ocean, land, atmosphere) and climate communities, as well as experts working on policy, law, negotiations, and geopolitics, to develop modeling and analysis tools for public- and private-sector decision makers.

The current private-sector focus is increasingly on sustainable business solutions for the Arctic. In this context, AFI has an important strategic economic planning function, that is, to work on the development of integrated models and scenarios that can be applied by companies contemplating or already doing business in the Arctic—models and scenarios that also take into account the local residents and environmental sustainability, as well as including comprehensive risk management for investment decisions.

Methodology

The methods listed here have been proposed by a variety of stakeholders; they are tentative and by no means exhaustive. A review of the status of work on the Arctic from the systems perspective is planned in the first phase of AFI implementation.

The AFI has already brought together a variety of stakeholders to share perspectives and information. This participatory nature is greatly enhanced through the unique platform afforded by the Arctic Circle for inter-community dialogue; this platform is already serving as an interactive tool for emerging Arctic futures.
Stakeholder perceptions will be revealed through representatives and experts, working in hand with, and on behalf of, the key Arctic stakeholder groups. The process will provide a problem-solving approach for the articulation of potential sustainable futures for the Arctic. The next development will be the launching of a stakeholder framework as a virtual platform to process and apply participatory methodology.

A large variety of participatory tools have been developed to jointly plan, analyze, and implement the processes of change required for the sustainable future of the Arctic. A major feature of these tools is the development of scenarios of alternative futures to understand how the world might develop and how this understanding might be used for strategic planning. The methods involving stakeholders create a “safe space” for communication and open dialogue, and are typically used in qualitative social research. The methods can be, for example, envisioning workshops, normative and exploratory forecast or foresight, interactive backcasting, mind mapping, participatory modelling, decision modelling, scenarios analysis, often including supportive software and models.

Executing the Arctic Futures Initiative and its integrated systems assessment are driven by matters of urgency and practicality. Thus, in lieu of complex full-system depictions using the combination of Earth system and integrated assessment models, which necessarily require longer time horizons to develop, the assessment will, to start with, rely on more policy-responsive simulations. The development of a medium complexity policy model, an Arctic system policy model, will bring together IIASA and Arctic experts from the relevant disciplines and communities to develop a practical modeling framework for rapid-assessment, rapid-response scenario articulation. The model will be developed and tested in participatory meetings with the various stakeholder communities and can be developed into a serious game for decision makers.

Foresight work within the AFI means participatory work and dialogue with stakeholders, and development of scenarios using participatory, qualitative, and quantitative methodology. By applying foresight, we examine the past, describe the present, study the possible futures; and through the scenarios we look through visionary lenses into alternative futures and potential surprises. Essentially, we examine the pathways to plausible sustainable futures of the Arctic. Scenarios, and the multi-sectorial scenarios in particular, will be developed along with all Arctic stakeholders involved.

Agent-based modeling (ABM) is one of many tools used for simulating the actions and interactions of individual actors or groups, as well as organizations and institutions, to examine how they affect individual systems and the system as a whole. The aim is to recreate and predict the appearance of complex phenomena, by searching for explanatory insights into the collective behavior of actors obeying simple rules. Essentially, simple behavioral rules generate complex behavior, typically observed in natural systems. The ABM modeling approach includes, for example, elements of game theory, complex systems, computational sociology, and multi-agent systems.

Integrated Assessment Modeling (IAM) has shaped increasingly collaborative research among IIASA Programs. The IAM framework combines several disciplinary models operating at different spatial resolutions that are integrated into an overall assessment framework. This framework covers demographics, all major sectors including agriculture, forestry, energy and industrial sources, enabling a concurrent assessment of major sustainability challenges. An appropriately scaled IAM framework for the medium complexity analysis is in demand for the Arctic, including a study on data requirements, in particular for integrated modeling of the Arctic.

Epilogue
To gain stakeholders’ perspectives in developing the AFI, meetings and discussions were conducted with representatives of more than 80 institutes, universities, governmental bodies, non-governmental
organizations, the private sector, Indigenous peoples, investors and
foundations. These include:
Academy of Finland
Aleksanteri Institute of the University of Helsinki, Finland
Alfred Wegener Institute (AWI), Germany
Aleut International Association (AlIA)
American Association for the Advancement of Science (AAAS)
Arctica Ltd.
Arctic Athabaskan Council (AAC)
Arctic Centre of the University of Lapland, Finland
Arctic Circle Assembly, Iceland
Arctic Contaminants Action Program (ACAP)
Arctic Council Senior Arctic Officials
Arctic Economic Council (AEC)
Arctic Frontiers
Arctic Monitoring and Assessment Programme (AMAP)
Arctic Science Summit Week
Center for International Climate and Environment Research (CICERO),
Norway
Center for Strategic and International Studies (CSIS), USA
Conservation of Arctic Flora and Fauna (CAFF)
European Commission (EC)
EU - European External Area
Finnish Institute for International Affairs (FIIA)
Finnish Environment Institute (SYKE)
Fletcher School of Law and Diplomacy, USA
Guggenheim Partners, USA
Gwich’in Council International (GCI)
International Arctic Science Committee (IASC)
International Council of Science (ICSU)
Inuit Circumpolar Council (ICC)
Lomonosov Moscow State University (MSU)
Ministry of Foreign Affairs, Finland
Ministry of Foreign Affairs, Russian Federation
Ministry of Foreign Affairs, Sweden
National Environment Research Council (NERC), UK
Northern (Arctic) Federal University (NArFU), Arkhangelsk, Russia
Northern Research Forum (NRF)
Novosibirsk State University (NSU), Russia
Parliament of Finland Polar Cooperation Research Center
Polar Cooperation Research Centre (PCRC), Kobe University, Japan
Polar Research Institute of China (PRIC)
Prime Minister’s Office, Finland
Protection of the Arctic Marine Environment (PAME)
Research Council of Norway
Royal Dutch Shell
Russian Academy of Sciences (RAS)
Russian Association of Indigenous Peoples of the North (RAIPON)
Russian International Affairs Council (RIAC)
Saami Council (SC)
Standing Committee of Parliamentarians of the Arctic Region
Stockholm Environment Institute (SEI), Sweden
Stony Brook University, USA
St. Peters burg State University (SPSU), Russia
Sustainable Development Working Group (SDWG)
Swedish Arctic Secretariat
Team Arctic Finland
The City University of New York (CUNY), USA
University of Alaska, Fairbanks (UAF), USA
University of Bremen, Germany
University of Helsinki, Finland
University of Lapland, Finland
University of the Arctic (UArctic)
U.S. Arctic Research Commission (USARC)
U.S. Department of Energy (DOE)
U.S. Department of State (DOS)
U.S. National Academy of Sciences (NAS)
U.S. National Science Foundation (NSF)
U.S. Polar Research Board (PRB)
Wilson Center, USA
World Meteorological Organization (WMO)
World Oceans' Council
World Policy Institute – Russia
World Wide Fund for Nature (WWF)