A Branch and Bound Method for Stochastic Global Optimization

Authors:   Norkin VI, Pflug GC, Ruszczynski A

Publication Year:   1996

Reference:  IIASA Working Paper WP-96-065

Abstract

A stochastic version of the branch and bound method is proposed for solving stochastic global optimization problems. The method, instead of deterministic bounds, uses stochastic upper and lower estimates of the optimal value of subproblems, to guide the partitioning process. Almost sure convergence of the method is proved and random accuracy estimates derived. Methods for constructing random bounds for stochastic global optimization problems are discussed. The theoretical considerations are illustrated with an example of a facility location problem.

VIEW CONTENT

PDF

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313

Twitter Facebook Youtube
Follow us on