Additive Genetic Variation under Intraspecific Competition and Stabilizing Selection: A Two-Locus Study [Revised June 2002]

Authors:   Buerger R

Publication Year:   2002

Reference:  IIASA Interim Report IR-02-013

Abstract

A diallelic two-locus model is investigated in which the loci determine the genotypic value of a quantitative trait additively. Fitness has two components: stabilizing selection on the trait and a frequency-dependent component, as induced for instance if the ability to utilize different food resource depend on this trait. Since intraspecific competition induces disruptive selection, this model leads to a conflict of selective forces. We study how the underlying genetics (recombination rate and allelic effects) interacts with the selective forces, and explore the resulting equilibrium structure. For the special case of equal effects, global stability results are proved. Unless the locus effects are sufficiently different, the genetic variance maintained at equilibrium displays a threshold-like dependence on the strength of competition. For loci with equal effects, the equilibrium fitnesses of genotypic value exhibit disruptive selection if and only if competition is strong enough to maintain a stable two-locus polymorphism. For unequal effects, disruptive selection can be observed for weaker competition and in the absence of a stable polymorphism.

VIEW CONTENT

PDF

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313

Twitter Facebook Youtube
Follow us on