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Abstract. Evolution takes place in an ecological setting that typically involves

interactions with other organisms. To describe such evolution, a structure is

needed which incorporates the simultaneous evolution of interacting species.

Here a formal framework for this purpose is suggested, extending from the

microscopic interactions between individuals — the immediate cause of natural

selection, through the mesoscopic population dynamics responsible for driv-

ing the replacement of one mutant phenotype by another, to the macroscopic

process of phenotypic evolution arising from many such substitutions. The

process of coevolution that results from this is illustrated in the context of

predator—prey systems. With no more than qualitative information about the

evolutionary dynamics, some basic properties of predator—prey coevolution

become evident. More detailed understanding requires specification of an

evolutionary dynamic; two models for this purpose are outlined, one from our

own research on a stochastic process of mutation and selection and the other

from quantitative genetics. Much of the interest in coevolution has been to

characterize the properties of fixed points at which there is no further phenotypic

evolution. Stability analysis of the fixed points of evolutionary dynamical systems

is reviewed and leads to conclusions about the asymptotic states of evolution

rather different from those of game-theoretic methods. These differences

become especially important when evolution involves more than one species.

Key words: Dynamical systems — Evolution — Game theory — Asymptotic

stability — Population dynamics

1 Introduction

It is a central problem in evolutionary theory that the evolution of a lineage

needs to be considered in the context of ecological conditions experienced by



the lineage. Natural selection, the source of much biotic evolution, is driven by

differences among organisms in survival and reproduction as they live out

their lives in an ecological setting, and the relationship between evolution and

ecology is aptly summed up in Hutchinson’s (1967) metaphor ’The ecological

theater and the evolutionary play’. The birth and death processes of indi-

viduals are a common object of study of both subjects, and there is a wide

recognition that a synthesis of the relevant areas of population ecology and

evolutionary genetics is needed to inject an ecological basis into evolutionary

theory; see for instance comments by Lewontin (1979).

The ecological setting of evolution can take many different forms, involv-

ing abiotic as well as biotic factors. In this paper we focus on the ecological

process of predation, and consider how to model the evolutionary dynamics

generated by an interaction between a prey and predator species. We do this

to provide some background to the subject for theoreticians interested in

entering the subject area, and also to illustrate and place in context some

mathematical methods developed by Marrow et al. (1992) and Dieckmann

and Law (1996). Although we concentrate on predation, the main ideas can be

applied to a variety of biotic interactions falling within the scope of coevolu-

tion, a term coined by Ehrlich and Raven (1964) to describe the evolutionary

process caused by the coupled evolution of all of the lineages concerned.

Slatkin and Maynard Smith (1979) and Futuyma and Slatkin (1983) give

introductions to coevolution. In a coevolving system, the evolution of the

component species needs to be considered simultaneously, because evolution-

ary changes in one species can be the cause of evolutionary changes in the

other(s).

A number of biological issues are raised by the coevolution of predators

and prey. Most important is an instability inherent in their coevolution, since

natural selection by the prey on the predator favours predator phenotypes

best able to consume the prey, whereas selection by the predator on the prey

favours prey phenotypes least likely to be killed. This may lead to an escala-

tion in traits affecting attack and defence, referred to as an evolutionary ‘rat

race’ by Rosenzweig (1973) and an ‘arms race’ by Dawkins and Krebs (1979).

Abrams (1986) argued that an arms race does not exhaust the possibilities; for

example, continuing evolution in one species may occur even if the other

remains constant. Although evidence is hard to find, Bakker (1983)

documented changes in mammalian herbivores and carnivores during the

Paleocene to Mid Eocene that could be of the kind suggested by Dawkins and

Krebs (1979). Those taxa characteristic of open habitats, where pursuit and

flight are critical features of predation, show similar speed-enhancing changes

in limb morphology; during this time the prey appear to have evolved faster

than predators. Dawkins and Krebs (1979) argued that an asymmetry in the

selection pressures would be expected, on the grounds that the prey is running

for its life whereas the predator ‘is only running for his dinner’. Notice that, if

the predator evolves faster than the prey, it could gain such a great advantage

that it destroys its prey altogether and brings about its own extinction. This

led for example Slobodkin (1968, 1974) and Michod (1979) to consider how
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the apparent ‘prudence’ in exploitation of prey by natural predators could

come about by selection operating at the level of the individual. One likely

cause is that the predator selects for prey life histories in which the effects of

predation on the prey’s reproductive success are reduced, a process experi-

mentally confirmed in the water flea Daphnia magna by Edley and Law (1988).

To investigate these and other issues arising in the coevolution of pred-

ators and prey it helps to have a formal structure for modelling the process.

Such models might be cast in terms of population genetics, evolutionary game

theory, or quantitative genetics. Population genetics deals with how the

frequency of a gene in each species with some effect on the interaction changes

over the course of time, as discussed by Jayakar and Zonta (1990). This

approach is to focus on the detailed dynamics of single genes. Evolutionary

game theory in contrast sacrifices genetics to focus on the details of ecological,

frequency-dependent interactions among organisms. Each species is assumed

to comprise a set of phenotypes influencing the interaction, and a search is

made for fixed points at which the phenotypes present are uninvadable by

others; see for instance Parker (1983, 1985). The focus in this case is on an

endpoint of evolution and, implicit in this, is an assumption that a sequence of

gene substitutions, the stuff of population genetics, can bring the system to the

fixed point in the first place. With these two approaches in mind, evolution has

been likened to the motion of a streetcar, with many stops and starts as one

gene is substituted for another, before eventually reaching the terminus;

population genetics deals with the path between one stop and the next, and

evolutionary game theory searches for the terminus. (We will see below,

however, that a terminus does not necessarily exist.) The third approach,

quantitative genetics, focuses on statistical properties of traits with continuous

variation caused by the environment and a large (unspecified) number of genes

with small effects; see for example Saloniemi (1993). This has the advantage

that many of the traits important in coevolution are continuous variables, and

the disadvantage that, like much of evolutionary game theory, it lacks an

explicit mechanistic basis in genetics.

The approach used here is motivated by the ecology of interactions

between predators and prey — the proximate cause of natural selection. The

evolutionary variables are therefore phenotypic traits (properties such as body

weight or height) rather than gene frequencies. But we wish to go beyond the

game theoretic study of fixed points to investigate a dynamical system of

evolution within which the properties of fixed points can be seen in their

proper context. This could be done either through quantitative genetics or as

a development of evolutionary game theory; we have chosen the latter path to

keep a close connection with game theory. Casting the dynamics in these

terms entails some compromise over the genetic system; the methods we

describe apply explicitly to a system of pure-breeding clones, but it will be seen

that a model used in quantitative genetics has many of the same features. Our

approach also departs from single-species evolutionary game theory in being

based on density in addition to frequency of different phenotypes. This is

an important ecological feature when dealing with games between species
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because, as Pimentel (1968) pointed out, the whole game achieves more or less

significance in the evolution of each species as the abundance of the other

species becomes respectively greater or lower.

2 A structure for modelling coevolution

We seek a formal description for the process of coevolution that works from

the details of phenotype-dependent interactions of individuals (the cause of

natural selection) to the large-scale phenotypic evolution of the system. One

would like the process to be ‘self-referencing’ in the sense that the path of

evolution is driven internally by the population dynamics of the interacting

species. We focus on one prey and one predator species, but note that the

structure could readily be extended to systems with greater numbers of species

and involving other kinds of interactions, as described by Dieckmann (1994)

and Dieckmann and Law (1996). The following argument rests on a hierarchy

of three timescales: microscopic interactions among individuals, mesoscopic

population dynamics, and macroscopic phenotypic evolution.

Interactions among individuals. Suppose that coevolution is taking place in

one trait in each species, the value of the trait in an individual (i.e. its

phenotype) being s
�

in the prey and s
�

in the predator; the traits might for

instance be adult body sizes. The trait values are taken to be continuous and

are elements of the sets S
�

and S
�

in the prey and predator respectively. The

phenotypes of a prey individual and a predator individual, which are denoted

s"(s
�
, s

�
) and taken from the set S"S

�
�S

�
, determine what happens when

they encounter one another. One must specify the effect of the encounter

on the birth and death rates of the individuals concerned. In qualitative terms

the encounter will most likely lead to an increased risk of mortality in the prey;

the predator on the other hand most likely experiences a reduced rate of

mortality or, in the longer term, an increased rate of reproduction, or both.

How great the effect on the vital rates is, depends on the phenotypes of the

individuals; any difference in vital rates between co-occurring conspecific

individuals with different phenotypes causes natural selection. For instance,

a large prey individual is more likely than a small one to defend itself

successfully from a predator of intermediate size and, as a result, to gain

a selective advantage through a lower risk of death in the encounter. Some

specific choices for the effect of encounters on vital rates are given in an

example in Sect. 3.

Population dynamics of resident phenotypes. The population dynamics de-

scribed below will drive the replacement of one phenotype by another.

Suppose first, as a preliminary, that each species comprises only one pheno-

type, the pair of phenotypes being given by s. To consider the population

dynamics, we introduce state variables x"(x
�
, x

�
) for the densities of prey

and predator respectively. The population dynamics of the two species may
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then be written as a pair of differential equations

xR
�
"x

�
f
�
(s,x) for i"1, 2 , (1)

where f
�

is the per capita rate of increase of species i, and depends on

s through a set of control parameters the values of which depend on the

current phenotypes. These control parameters indicate how the birth and

death rates caused by s influence population dynamics; for example in the

familiar Lotka-Volterra equations, xR
�
"x

�
(r
�
#� �

��
x
�
), they are the r

�
’s and

�
��
’s. The control parameters would be taken as constants in a pure ecological

model, but in the presence of coevolution they may change as the phenotypic

state changes, as discussed by Lewontin (1979) and Stenseth (1986). Clearly we

are only concerned with systems in which the densities are bounded; more-

over, the issue of coevolution only arises if the population dynamics allow

coexistence of the species over a subset of S, denoted by S
�
.

Population dynamics of resident#mutant phenotypes. To examine how the

system evolves, we start by allowing a mutant to arise and determine what

happens to its population density x�
�
. Suppose a mutation occurs in species i,

causing a phenotypic change �s
�
in a system currently composed of individuals

of phenotypes s; such a mutant is denoted s�
�
"s

�
#�s

�
. Two factors are crucial

in determining whether the mutant replaces the resident. First it should

increase when rare and second it should then tend to fixation.

To determine the initial behaviour of a mutant when rare, the initial per

capita rate of increase must be written in such a way that it distinguishes the

phenotype of the individual under consideration from those in the environ-

ment in which it occurs. Thus we write fI
�
(s�
�
, s,x), where the first argument

s�
�
defines the phenotype of this individual, and the latter arguments s, x can be

regarded as defining the biotic environment, see below. The dynamics of the

system augmented by the rare mutant are therefore written

xR
�
"x

�
fI
�
(s
�
, s, x) for j " 1, 2 ,

(2)

xR �
�
"x�

�
fI
�
(s�
�
, s,x) .

The first two equations describe the dynamics of the resident phenotypes, and

the last gives the dynamics of the mutant. Since the mutant is rare initially, its

effect on the biotic environment at this stage is negligible and the environment

is determined by the resident phenotypes. For simplicity we assume that,

before arrival of a mutant, the densities of resident populations with pheno-

types s have come to equilibrium given by

xL
�
(s): fI

�
(s
�
, s, xL )"0 for j"1, 2 ; (3)

in this case of a system at equilibrium the environment is fully specified by s, so
the third argument of fI

�
is no longer needed, and we write the initial per capita

rate of increase of the mutant as f�
�
(s�
�
, s). The conditions under which the

assumption of equilibrium population dynamics can be removed are con-

sidered in Dieckmann and Law (1996). A necessary condition then for the
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mutant to increase when rare is that it should have a positive per capita rate of

increase in the environment of the resident phenotypes at their equilibrium

densities, i.e.

fM
�
(s�
�
, s)'0 . (4)

The eventual fate of an initially successful mutant is less easy to settle.

Either it goes to fixation, thereby replacing the former resident, or both the

mutant and the resident stay in the system at finite densities. For population

dynamics (2) of Lotka-Volterra type (i.e. f
�
"r

�
#� �

��
x
�
), the latter outcome

can typically be excluded; the principle of mutual exclusion is proven in

Dieckmann (1994). In this case, invasion implies fixation, and the phenotype

of species i has made a step from s
�

to s�
�
. The idea here is to allow the

dynamical system of population densities explicitly to drive the replacement of

one mutant by another.

Phenotypic evolution. Once a method is in place to determine whether a

mutant phenotype replaces the resident phenotype, it is straightforward

to consider a sequence of mutants each one replacing the phenotype that

was previously present. Such a sequence, called a trait-substitution se-

quence by Metz et al. (1994), indicates the long-term evolutionary path of the

system. The aim now is to find a system of equations describing this macro-

scopic evolution, in which the phenotypic traits are themselves the state

variables.

As a preliminary, we make two assumptions. These are that the principle

of mutual exclusion applies and that successful mutants occur rarely enough

for evolution to be modelled to a good approximation by a monomorphic

dynamic within species. These assumptions apply below unless otherwise

stated. We caution that the assumption of monomorphism would not apply if

the mutant and resident phenotypes come to persist in a protected polymor-

phism; Metz et al. (1994) and Dieckmann (1994) consider ways to deal with

this problem.

A selection derivative, measuring the sensitivity of the mutant’s initial rate

of increase to changes in its phenotype, is central to the evolutionary dynamic.

This is defined as

�
�s�

�

fM
�
(s�
�
, s)

�����
�

" lim
�����

�

fM
�
(s�
�
, s)!fM

�
(s
�
, s)

(s�
�
! s

�
)

, (5)

where fM
�
(s
�
, s)"0, because the resident phenotype is at equilibrium with

respect to population density. Notice that the derivative is evaluated while

holding the environment (defined by the equilibrium densities) constant, since

it refers to a rare mutant invading at xL (s). The selection derivative is important

because it indicates whether phenotypic evolution takes place in the direction

of greater or smaller phenotypic values; if �fM
�
/�s�

�
'0 (respectively �fM

�
/�s�

�
(0),

then the system is vulnerable to invasions by mutants with s�
�
's

�
(respectively

s�
�
(s

�
) with s�

�
sufficiently close to s

�
. One would expect, then, the macroscopic
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evolutionary dynamics to have a property

sR
� �

'0 when �fM
�
/�s�

�
'0

"0 when �fM
�
/�s�

�
"0 for i"1, 2 .

(0 when �fM
�
/�s�

�
(0

(6)

These conditions do not, of course, yet specify an evolutionary dynamic; this

would entail the introduction of a scaling factor which can be dependent on

the process of mutation. We will give in Sect. 4 such a dynamic from Dieck-

mann and Law (1996) that is derived from the assumption of infinitesimal

mutational steps and as such applies as a close approximation for mutations

of small finite size. Nonetheless, without specifying the mutation process, it is

still possible to get some qualitative insights into predator—prey evolution and

other kinds of coevolving systems. Notice, in particular that isoclines of zero

evolution according to (6) are defined by

�
�
(s) :

�
�s�

�

fM
�
(s�
�
, s)

�����
�

"0 ; (7)

the fixed points in phenotypic evolution are thus given by the intersec-

tions of �
�

and �
�
. These qualitative properties are illustrated in the next

section.

3 An example

We show how the structure above may be used in the context of a specific

model investigated by Marrow et al. (1992), in which the traits s undergoing

evolution are interpreted as body sizes of the prey and predator. The per

capita rates of increase of phenotypes s at densities x are given by

prey: f
�
(s,x)"r

�
!�(s)x

�
!�(s)x

� (8)

predator: f
�
(s,x)"!r

�
#�(s)x

�

where r
�
, r

�
, �, � and � are positive control parameters. The benefit to

a predator of a prey item, � (s), is taken to be at its maximum for some

intermediate body size of both the predator and the prey. It is assumed that

a bell-shaped function describes the relationship:

�(s)"c
�

exp(!��
�
#2c

�
�
�
�
�
!��

�
)

where �
�
"(s

�
!c

�
)/c

�
and �

�
"(s

�
!c

�
)/c

	
, and c

�
to c

	
are positive

parameters. On the basis that what is good for the predator is bad for the

prey, the loss to the prey, �(s), is taken to be proportional to � (s)

� (s)"exp(!��
�
#2c

�
�
�
�
�
!��

�
) .

The term �(s) represents self-limitation in the prey and therefore depends

only on s
�
, and a quadratic function is assumed such that the prey would
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evolve to an intermediate body size in the absence of predation

�(s
�
)"c



!c

�
s
�
#c

�
s�
�

where c



, c
�

and c
�

are positive parameters.

For certain ranges of the parameters in the functions �, � and �, there are

body sizes that permit both species to have positive equilibrium densities xL ;
the set of body sizes with this property, S

�
, is delimited by the oval curve in

Fig. 1. As Harrison (1979) for example showed, xL has global asymptotic

stability given Equations (1) and (8), and this ensures that the system comes to

equilibrium for a given s. Suppose that a mutation occurs causing small

changes in body size to the predator or prey. A prey mutant (respectively

predator mutant) increases when rare if it satisfies respectively:

fM
�
(s�
�
, s)"r

�
!� (s�

�
) ·xL

�
(s)!�(s�

�
, s

�
) ·xL

�
(s)'0

fM
�
(s�
�
, s)"!r

�
#� (s

�
, s�

�
) ·xL

�
(s)'0 .

Since these dynamics are of Lotka-Volterra type, invasion typically implies

fixation. Exceptions to this principle of mutual exclusion can occur close to

the isoclines �
�
(s), as discussed in Dieckmann (1994), in which case both

resident and mutant may remain causing the population to become polymor-

phic. Usually this behaviour does not persist because evolution in the other

species takes the system away from the isocline, and the system reverts to

monomorphism. But it is possible for evolution to lead to a fixed point with

this polymorphic property (see Sect. 5), in which case the monomorphic

assumption underpinning the model breaks down, as discussed by Metz et al.

(1994). With these caveats, conditions (6) can be used to partition S
�

into

regions in which evolution towards larger (�fM
�
/�s�

�
'0), or smaller (�fM

�
/�s�

�
(0),

body size occurs for each species, separated by the isocline �
�
(s) on which there

is no selection. An example is given in Fig. 1, the qualitative direction of

evolution being shown by the arrows.

Simple though this approach is, it illustrates some features of a coevolving

predator—prey system. First, it shows the tension typical of predator—prey

coevolution. In the example given, the predator gains its greatest benefit from

the prey at s
�
"0.5, s

�
"0.5, but the prey suffers its greatest loss here and the

system does not tend to this point. Second, there is continuing evolution

across the phenotype space, only terminated if the system reaches a fixed

point. We should emphasize that, although evolution in this example leads to

a fixed point, this is by no means an inevitable outcome, and an example is

given later (Fig. 2) in which the 	-limit set of the evolving system is a limit

cycle — the species driving each other to continue evolving as long as the

system remains in existence. Third, if one species tended to its isocline,

continuing evolution would require mutations in the other species to shift it

along the isocline; such evolution can be envisaged as an arms race because

there would be no further change without the ‘escalation’ due to these

mutations. Fourth, the geometry of fixed points of the system is exposed, that
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Fig. 1. Some qualitative properties of evolutionary dynamics of prey (s
�
) and predator (s

�
)

body size. S
�
is the interior of the oval region. The line �

�
is shown as discontinuous; the

straight line �
�
is shown as continuous. Fixed points of the system occur at the intersections

of �
�

and �
�
. Arrows indicate the direction in which body size evolves in each species,

horizontal arrows for prey and vertical arrows for predators. Discontinuous part of the
boundary of the oval region indicates where a prey mutant could cause predator extinction.
From Marrow et al. (1992: Fig. 2a), with parameters: r

�
"0.5, r

�
"!0.05, c

�
"1.0,

c
�
"0.6, c

�
"0.5, c

�
"0.22, c

�
"0.5, c

	
"0.25, c



"3.0, c

�
"10.0, c

�
"10.0

is, the points at which the lines �
�

and �
�

intersect. There can be several such

points, and the properties of these fixed points are of interest in their own right

(see Sect. 5). It can be seen that, in the case of the outer pair of fixed points,

each species is evolving towards its isocline; but, in the case of the intermediate

fixed point, the predator converges while the prey diverges. Fifth, the shape of

S
�
indicates that there is only a limited range of body sizes enabling coexist-

ence of the species; it is possible for a sequence of mutant substitutions in the

prey to lead to extinction of the predator, if they take a path across the part of

the boundary shown as discontinuous. On the other hand there is no region of

phenotype space in which both species have an equilibrium population

density of zero, and thus there is in this example no evolutionary path in

which the predator can gain such an advantage over the prey that it destroys

the prey and brings about its own extinction.
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4 Evolutionary dynamics

To take the investigation of coevolution further, an explicit dynamic

for the process is needed. This can be done in several ways; here we

mention a stochastic trait-substitution model and one from quantitative

genetics.

Stochastic trait-substitution model. This models evolutionary trait-substitu-

tion sequences as directed random walks in phenotype space arising from

mutation and selection. Stochasticity is induced in the evolutionary dynamics

first by making the occurrence and size �s
�

of mutations a random vari-

able. Second, it comes about from the chance extinction that even ad-

vantageous mutants experience after their first appearance in a single indi-

vidual, due to the effects of demographic stochasticity as discussed by Fisher

(1958: 80 et seq.). These random effects are countered by natural selection

arising from the biotic environment and this imposes directionality on the

random walks. A master equation for this process is derived in Dieckmann

and Law (1996), and it is shown that, by taking the first jump moments of the

equation (van Kampen 1981), this yields a system of ordinary differential

equations


sR
�
�"k

�
(s)

�
�s�

�

fM
�
(s�
�
, s)

�����
�

for i"1, 2 , (9)

where

k
�
(s)"1

2
�
�
�
�

xL
�
(s)

x
�

70

Here 
s
�
� is the expected phenotypic value, �

�
is the probability that a given

birth is a mutant, x
�

is the unit density scaling xL
�
to numbers, and �

�
is the

variance of the mutation distribution. The factor k
�
(s) scales the rate of

evolution in species i and comprises two parts, the evolutionary rate constant

�
�
�
�
�
�

and the equilibrium population size. Notice the dependence of this

system on the selection derivative (5); as a consequence the qualitative proper-

ties of the dynamics (6) remain in place, and system (9) specifies a full dynamic

for the process of coevolution developed earlier. The system (9) is a first order

result which is exact for mutational steps of infinitesimal size, and gives a good

approximation for mutational steps of small size. The system can be refined

by consideration of higher-order corrections, as derived and discussed in

Dieckmann and Law (1996).

Figure 2 illustrates some evolutionary orbits of a coevolving system of

predator and prey based on equations (9), having the feature that the 	-limit

set is a limit cycle rather than a fixed point. This is of some biological interest

because it shows that the interaction between the predator and prey is

sufficient to keep the system evolving indefinitely; as discussed by Marrow et

al. (1992) and Dieckmann et al. (1995), changes in the physical environment

are not a prerequisite for continuing evolution.
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Fig. 2 Phase portrait of a system with an evolutionary limit cycle. S
�
is the interior of the

oval region. The discontinuous line is �
�
and the straight continuous line is �

�
. A fixed point

of the system occurs at the intersection of �
�

and �
�
. Curved continuous lines within S

�
are

orbits, all of which tend to the limit cycle around the fixed point. The dynamical system (9) is
set such that (�

�
�
�
)/(�

�
�
�
)"1; other parameters are as in Fig. 1 except for c

�
"0.11

(Marrow et al. 1992: Fig. 2g)

Quantitative genetics model. In the literature, an evolutionary dynamic from

quantitative genetics has most often been used. Quantitative genetics at its

simplest distinguishes between two components of the phenotypic value s
�
: an

additive genetic part a
�
and a non-genetic part e

�
statistically independent of a

�
.

The distinction between s
�

and a
�

is made because selection operates on

phenotypic values but only the additive genetic components are inherited, as

discussed by Falconer (1989). The standard formulation of a quantitative-

genetic dynamic given by Lande (1979) does not allow the per capita rate of

increase (fitness) associated with phenotype s
�
to depend on the environment.

But Iwasa et al. (1991), Taper and Case (1992) and Abrams et al. (1993) have

suggested ways of removing this limitation. By assuming that the phenotypic

distributions are narrow and that the timescale of population dynamics can be

separated from that of evolution, a dynamic resembling closely that of equa-

tions (9) can be obtained:

sNQ
�
"k

�

�
�s�

�

fM
�
(s�
�
, sN )

�
�
����

�

for i"1, 2, (10)
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where

k
�
"�

�
�

'0 .

where sN
�
is the expected mean phenotypic value and �

�
�

is the variance of the

additive genetic values, often assumed to be constant. Although not usually

explicitly derived from quantitative genetics, dynamics of this kind have been

used on a number of occasions; see for instance Brown and Vincent (1987a),

Rosenzweig et al. (1987), Hofbauer and Sigmund (1990), Vincent (1990) and

Marrow and Cannings (1993).

In view of the models’ radically different starting points, the similarity of

dynamics (9) and (10) is notable. They do however differ in the source of

variation on which selection operates. Dynamics (10) depend on phenotypic

variation due to many genes with small additive phenotypic effects placed

together in different combinations; evolution is then a process of selection on

these combinations as they are reshuffled through segregation and recombina-

tion. Dynamics (9) on the other hand depend on variation generated by

mutation. The quantitative genetic model is well-founded empirically, where-

as the mutation-driven dynamic (9) is based on a somewhat simplified notion

of phenotypic variation. On the other hand dynamics (9) are derived explicitly

from a stochastic process of mutation and initial increase of advantageous

mutants in Dieckmann and Law (1996), and represent a natural dynamical

extension to evolutionary game theory.

5 Fixed point properties

Much of the interest in models of coevolution has been to characterize

properties of fixed points in phenotype space at which the selection pressures

generated by interacting species are balanced, so that there is no further

phenotypic evolution of the system. Such work has usually been developed in

the context of evolutionary game theory, and a dynamic is often not made

explicit in this context. Here we mention some of the literature on the

application of evolutionary game theory to questions of coevolution. We then

point out that the introduction of an evolutionary dynamic is necessary to

determine the asymptotic stability of fixed points (in contrast to the assertions

of game theory). It should be kept in mind, however, that these fixed point

properties cannot tell us all we need to understand the evolutionary process

for, as we have already seen, the 	-limit set of an evolutionary dynamic need

not be a fixed point (Fig. 2).

Evolutionarily stable strategy (ESS . The notion of an ESS, defined by

Maynard Smith and Price (1973), has been widely used to identify fixed points

in phenotypic evolution, as discussed by Maynard Smith (1982). An ESS is

a phenotype which, if adopted by almost all individuals in a population,

cannot be invaded by a rare mutant of any other phenotype. The notion has

been applied to multispecies coevolution by Brown and Vincent (1987a,
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1987b) amongst others. In the context of two-species coevolution used in this

paper, a sufficient condition for the phenotypes s to be an ESS is that, for

individuals of phenotypes s�
�
9s

�
,

fI
�
(s�
�
, s

�
, s

�
, xL (s))

�����
�

'fI
�
(s�
�
, s

�
, s

�
,xL (s)) for i, j"1, 2 and j9i ,

recalling from (2) that the first argument of fI
�
defines the individual’s pheno-

type, and the other arguments define its biotic environment. The set from

which s�
�
is drawn is discussed below. The argument s is written out in full

above to distinguish the condition for an ESS from another notion given

earlier by Roughgarden (1979, 1983), that of a coevolutionarily stable
community (CSC); this has the property (in our notation)

fI
�
(s�
�
, s

�
, xL (s))

�����
�

'fI
�
(s�
�
, s

�
,xL (s)) for i, j"1, 2 and j9i ,

where the phenotype of the conspecific resident is not allowed to affect the per

capita rate of increase of the mutant other than by the equilibrium densities,

and is thus not specified. This means that the mutant’s fI
�
depends on the

phenotype of the conspecific resident only through the effect of the latter on

the equilibrium densities. Consequently intraspecific frequency-dependent

selection is excluded, and the circumstances under which the notion of a CSC

applies are rather more restricted than those for the ESS, as discussed by

Abrams (1989) and Taper and Case (1992). Notice that these game-theoretic

properties of fixed points do not consider evolutionary dynamics, and such

points may or may not be attractors in phenotypic evolution. An ESS as

defined above might be better called an evolutionarily steady state, as this

makes no reference to the dynamical notion of stability.

To add to the problems of terminology, the term ESS has also been used to

refer to local asymptotic stability of equilibria of population densities in

coevolutionary theory by Reed and Stenseth (1984). They envisaged a vector

x of densities for resident phenotypes s, and a vector x� of densities for mutant

phenotypes s�, the set of phenotypes s being an ESS if the equilibrium point at

which x90 and x�"0 has local asymptotic stability for all s�9s, given that

s� lies in the neighbourhood of s. This definition explicitly extends the notion

of an ESS to account for population dynamics but, like the definitions above,

makes no reference to evolutionary dynamics.

In these arguments and those below it is important to be clear about what

set of mutant phenotypes is tested against the fixed-point phenotypes. Typi-

cally in evolutionary game theory, it is assumed that all phenotypes in S
�
are

tested (Maynard Smith 1982). How useful it is to test the fixed point against all

possible phenotypes in coevolutionary models is debatable, because the range

of phenotypes created by mutation and recombination around the current

mean value is typically a small subset of S
�
. As Roughgarden (1987) pointed

out, one would not expect all the phenotypic variation apparent in different

breeds of dogs to arise in a natural population of Canis lupus. To restrict

phenotypic variation to a small region in the neighbourhood of the current

mean is in keeping with Darwin’s (1859) notion that evolution typically occurs

by the accumulation of small phenotypic changes. It therefore seems more
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natural to use a local test, comparing the fixed point against phenotypes

involving small deviations from it, as in the definition of an ESS above by

Reed and Stenseth (1984); we adopt the local test below. We also restrict

attention to a fixed point that lies in S
�
. An interior fixed point of this kind,

denoted sL below, has the property that the selection derivatives �fM
�
/�s�

�
vanish

at sL for both species.

Asymptotic stability of fixed points Here we review and develop some results

concerning the asymptotic stability of fixed points given dynamics (9) to

contrast with those from evolutionary game theory. We assume throughout

that fM
�
(s�
�
, s) is continuous, twice differentiable in s�

�
and s

�
, and has non-zero

second derivatives. The function fM
�
(s�
�
, s) then is saddle-like in s�

�
and s

�
around

the isoclines �
�
(s); on the line s�

�
"s

�
, we have fM

�
(s�
�
, s)"0. As a preliminary,

we note two properties of the isoclines. The first is non-invasibility such that,

on �
�
(s), mutants in species i with phenotypes close to �

�
(s) are not able to

invade:

��

�s��
�

fM
�
(s�
�
, s)

�����
�

(0 ; (11)

the converse of this we refer to as invasibility. The notion of non-invasibility is

familiar from ESS theory (Parker and Maynard Smith 1990) and the argu-

ments of Roughgarden (1983) and Brown and Vincent (1987a, 1987b). Second

is the property of convergence that successive mutations in species i cause

evolution towards �
�
(s):

��

�s��
�

fM
�
(s�
�
, s)

�����
�

# ��

�s
�
�s�

�

fM
�
(s�
�
, s)

�����
�

(0 ; (12)

with the converse property of divergence. Attention was first drawn to the

distinction between convergence and non-invasibility by Eshel and Motro

(1981) and Eshel (1983), and was discussed in more detail by Taylor (1989). It

is, for instance, conceivable that the isocline is non-invasible, but that starting

from other points in its neighbourhood species i evolves away from it; such

a configuration has aptly been called a ‘Garden of Eden’ configuration by

Hofbauer and Sigmund (1990).

As shown by Abrams et al. (1993), the relationship between these isoclinic

properties and asymptotic stability is trivial if the dynamical system comprises

only one species. If we take just one of equations (9), the Jacobian at the fixed

point sL
�

is:

J"k
�
(s)�

�� fM
�
(s�
�
, s

�
)

�s��
�

#�� fM
�
(s�
�
, s

�
)

�s
�
�s�

�
�
��������ˆ �

.

The condition for dynamical stability of a fixed point J(0 thus co-

incides with the condition for convergence (inequality 12). Clearly, dy-

namical stability of the fixed point is not equivalent to non-invasibility of

the fixed point.
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For 2-dimensional systems as given in equations (9), the fixed points are

given by the intersection of the isoclines �
�
(s) and �

�
(s), and the Jacobian at

a fixed point sL is

J"
k
�
(s) �

�� fM
�
(s�
�
, s)

�s��
�

#�� fM
�
(s�
�
, s)

�s
�
�s�

�
� k

�
(s)

�� fM
�
(s�
�
, s)

�s�
�
�s

�

k
�
(s)

�� fM
�
(s�
�
, s)

�s�
�
�s

�

k
�
(s) �

�� fM
�
(s�
�
, s)

�s��
�

#�� fM
�
(s�
�
, s)

�s
�
�s�

�
�

� �����ˆ

.

As in the 1-dimensional case, the bracketed terms on the diagonal are the

same as the expressions given in inequality (12), and are therefore the isoclinic

conditions for convergence of each species. But there is a much more indirect

relationship between these convergence conditions and dynamical stability.

Abrams et al. (1993) consider the necessary and sufficient condition for local

stability of a fixed point, that tr J(0 and det J'0. From this and our own

work we collect together the following results for 2-dimensional systems.

(i) Convergence of each species (i.e. bracketed terms in J negative) is neither

necessary nor sufficient for local asymptotic stability of the fixed point.

Convergence is not sufficient because, although convergence implies tr J(0,

the sign of det J depends on the off-diagonal mixed partial derivatives.

Convergence is not necessary because it is possible to have tr J(0 and det

J'0 when one species is convergent and the other divergent. (ii) If each

species is divergent, i.e. both bracketed terms of J are positive, we have tr

J'0 and hence the fixed point is unstable. Thus certain classes of fixed point

are definitely evolutionary repellors, but others could be either repellors or

attractors. However, by allowing for conditions on the signs of the off-

diagonal elements of J, three further results about these remaining fixed points

can be given. (iii) If each species is convergent and the off-diagonal elements

are of opposite sign, the fixed point is an evolutionary attractor. (iv) If one

species is convergent, the other divergent and the off-diagonal elements have

the same sign, the fixed point is an evolutionary repellor. (v) In all cases not

covered by (ii), (iii) or (iv) local stability of the fixed point can be tuned just by

varying the evolutionary rate constants. We conclude from these results that

the simple identity of the condition for convergence with that for local

asymptotic stability, which holds for single-species evolution, has no counter-

part in multispecies coevolution. In the latter case, the stability of a fixed point

can depend critically on the details of the dynamical features of the coevolving

system.

Example. Figure 3 is an example which illustrates some of the results de-

scribed above. At the point of intersection of the isoclines, the prey phenotype

sL
�

has the properties of invasibility and divergence, whereas the predator

phenotype sL
�

has the properties of non-invasibility and convergence. This

example is interesting for several reasons. First, the fixed point is an example

of case (v) above, i.e. its dynamical stability depends on the evolutionary rate
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Fig. 3. A system with isoclines such that the predator is convergent and the prey is
divergent at the fixed point. S

�
is the interior of the oval region. The discontinuous line is

�
�

and the straight continuous line is �
�
. The fixed point of the system occurs at the

intersection of �
�

and �
�
. The parameters defining the isoclines are as in Fig. 2. Sections of

the isoclines are labelled as follows. I: satisfies both inequality (11) and (12); II: satisfies (12)
but not (11); III: satisfies neither (11) nor (12)

constants. If the rate constants of the prey and predator are chosen in the ratio

1 :1, the fixed point is unstable and the attractor is given by a limit cycle

(Fig. 2). On the other hand, if the rate constants are chosen in the ratio 1 :10,

allowing faster predator evolution, the fixed point becomes stable and serves

as an attractor for the evolutionary dynamics (Fig. 4). Second, the example

illustrates how dynamical stability is independent of non-invasibility of the

fixed point. It can be seen that sL is an attractor in Fig. 4 notwithstanding the

fact that coevolution leads to a local fitness minimum for the prey. Takada

and Kigami (1991) and Abrams et al. (1993) have also noted that a system of

coevolving species may be driven to a fixed point where one species is at

a local fitness minimum. Third, the fixed point has a property that there is

disruptive selection in the prey population and, as a result of this, two

phenotypes can coexist on opposite sides of the fixed point. This can lead to

evolutionary branching in the prey species, and the monomorphic evolution-

ary dynamic (9) ceases to be appropriate when the system reaches the fixed
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Fig. 4. Phase portrait of a system based on the isoclines given in Fig. 3. S
�
is the interior of

the oval region. The discontinuous line is �
�

and the straight continuous line is �
�
. A fixed

point of the system occurs at the intersection of �
�

and �
�
. Curved continuous lines within

S
�
are orbits, all of which tend to the fixed point. The dynamical system is the same as that in

Fig. 2, except that parameters of dynamical system (9) are set to slow down prey evolution:
(�

�
�
�
)/(�

�
�
�
)"0.1

point, a phenomenon noted by Christiansen (1991) and discussed in depth by

Metz et al. (1994). Fourth, in the system illustrated in Fig. 4, the three basic

kinds of selection discussed by Mather (1973 : 90) are all present: selection is

directional for both species away from the isoclines, stabilizing for the predator

around its isocline and disruptive for the prey around its isocline in the

neighbourhood of the fixed point.

6 Discussion

Evolutionary game theory and dynamical systems. A distinction between game

theoretic methods, concerned primarily with non-invasibility of fixed points

(ESSs), and more general considerations of dynamics runs rather deep

through evolutionary theory. In evaluating these methods, the following

points should be stressed. First, even in the evolution of a single species,
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non-invasibility does not guarantee dynamical stability of the fixed point.

Second, in the coevolution of interacting species, neither non-invasibility nor

convergence is sufficient to ensure dynamical stability of the fixed point. One

needs further knowledge of the mixed partial derivatives arising from interac-

tions between species and on the rates at which evolutionary processes take

place within species to determine whether a fixed point is an attractor. Notice

in particular that the evolutionary rates and thus the evolutionary stability can

depend on specific features of the mutation process, see equations (9), which

therefore must not be excluded from the discussion of evolutionary phenomena.

Third and perhaps most important, there are no a priori grounds in the

first place to suppose that an evolving system should tend to a fixed point;

other 	-limit sets such as limit cycles or even chaotic orbits in phenotype

space seem just as plausible. In fact Van Valen (1973) proposed, on the basis of

palaeontological evidence, that interactions among organisms could be suffi-

cient to cause continuing evolutionary change. As pointed out by Fisher

(1958: 45), such biotic processes could be responsible for a continual deterio-

ration in the environment experienced by a species, and Van Valen (1973) used

the metaphor of the Red Queen’s hypothesis ‘it takes all the running you can

do, to stay in the same place’ from Carroll (1871) to describe the resulting

evolutionary process. Such 	-limit sets are referred to as Red Queen dynamics

in the literature by authors such as Rosenzweig et al. (1987), Marrow et al.

(1992) and Dieckmann et al. (1995), and an example of such a system was given

in Fig. 2.

Knowledge of non-invasibility and of other fixed point properties is

nonetheless a helpful guide to understanding certain features of the dynamics.

In particular we note that a system tending to a fixed point at which there is

disruptive selection for at least one species will violate the assumption of

monomorphic dynamics on which equations (9) depend. See Dieckmann

(1994) for suggestions as to how this problem may be overcome.

Empirical background. To the theorist interested in entering the field of

coevolution, we ought to point out that the empirical base of the subject is not

strong. Although many features of living organisms are best interpreted as the

outcome of a process of coevolution, rather little is known about the dynamics

of the process. There is, for instance, some evidence for coevolution of

predators and their prey from the fossil record of hard-bodied organisms; see

for example Vermeij and Covitch (1978), Kitchell et al. (1981), Vermeij (1982,

1983, 1987), Bakker (1983), Stanley et al. (1983), West et al. (1991). But in such

examples one sees only an outcome of the evolutionary dynamics, and the

dynamics themselves are not readily reconstructed. A rare exception in the

case of host-pathogen evolution is myxomatosis in Australia documented by

Fenner and Ratcliffe (1965) where, following the release of the myxoma virus

in 1950, the virulence of the myxoma virus declined as did the susceptibility of

the rabbit; from the information available, some inferences about the evolu-

tion of virulence can be made from the data, as discussed by Anderson and

May (1982) and Dwyer et al. (1990). There is unfortunately no experimental
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basis in coevolution to match, for instance, the experiments of single-species

quantitative genetics where selection differentials can be applied to specific

traits and responses to selection measured, as described by Falconer (1989).

This is not altogether surprising, because the experimental problems of getting

two or more interacting species to live together while each generates selection

differentials on the other(s) are, to say the least, substantial. Yet experiments

along these lines are needed to set the evolutionary dynamics of coevolution

on a firm empirical base and to guide development of theory.

We end with three suggestions about possible directions for future re-

search.

Community coevolution. We have considered a simple case of coevolution

involving two species, it being straightforward in this case to visualise the

geometry of evolutionary dynamics. In reality matters are more complicated

since it is rare for a predator and prey species to live in isolation of other

interactions; as reviewed by Pimm et al. (1991), typically they would be

embedded in a food web with other species. Unless the interactions between

a particular pair of species are much stronger than those with others, one

needs to think of the traits evolving as a result of an ensemble of the selection

pressures of all the species present, a process referred to as diffuse coevolution

by Janzen (1980). The issue of how these larger communities evolve is of

interest in its own right, and there is much to be done to develop a mathemat-

ical framework for such investigations. Some steps in this direction are the

lag-load model of Maynard Smith (1976) and Stenseth and Maynard Smith

(1984), the plant-herbivore model of Levin et al. (1990), the rugged fitness

landscape models of Kauffman and Johnsen (1991) and Kauffman (1993), and

the predator—prey community model of Brown and Vincent (1992).

Evolution of population dynamics. As phenotypic evolution takes place, the

control parameters of population dynamics will typically change and this may

lead to qualitative changes in the population dynamics, for instance a change

from an equilibrium to a non-equilibrium 	-limit set for population densities.

There have been few attempts to document this experimentally, although

Stokes et al. (1988) have suggested that changes observed in the population

dynamics of a laboratory population of blowflies were consistent with evolu-

tion from oscillatory to equilibrium population dynamics. Data from natural

populations such as those collated by Hassell et al. (1976) have suggested that

chaotic dynamics are rather rare; on the other hand recent research by Rand

and Wilson (1991) and Turchin and Taylor (1992) suggests that such dynamics

do occur. A question that arises from the feedback from evolution to popula-

tion dyanamics is whether there could be a tendency for equilibrium attractors

for population density to come to prevail in natural systems. Work by Hansen

(1992), Metz et al. (1992), Gatto (1993) and Godfray et al. (1993) argues for

this. But whether there is a general mechanism (based on individual selection)

for evolution to do so is open to debate, and needs further investigation.
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Adaptive landscapes. One might ask if some property of the species increases

during their coevolution, that is, whether in some sense the species are

‘improving’ on an absolute scale. The metaphor of an adaptive topography,

which envisages that phenotypic values of a species can be mapped on to

a scale of mean population fitness to produce a hilly landscape, has been

widely used in evolutionary theory. Evolution is then seen as a process of hill

climbing until a local maximum in mean fitness is reached. But it is not at all

clear that this metaphor is appropriate if selection is generated by interactions

within the system as opposed to factors set externally (e.g. abiotic factors such

as temperature and humidity). Let us examine two interpretations of this

metaphor. We consider evolution in one of the species, and assume that the

system is at some point s in a phenotype space prior to a mutation in this

species, with population dynamics that have settled to equilibrium. Suppose

an advantageous mutant starts to spread. (i) A first obvious interpretation of

mean fitness would be the population’s mean per capita rate of increase. But

this measure is not appropriate because the total population density may

decline as the mutant starts to spread; from a starting height of zero, the mean

per capita rate of increase would then become negative and the path of

evolution would be down a surface defined by this measure. (ii) An alternative

interpretation would be to use a surface defined by the initial per capita rate of

increase of mutants in the environment s, the slope of which is given locally by

the selection derivative (5) indicating the correct direction of evolution. Yet, by

the time the mutant reaches fixation, it has a per capita rate of increase of zero.

Thus, based on this second measure, there is no overall gain arising from the

evolution, and we conclude that it remains debatable as to how appropriate

a hill-climbing metaphor is in the context of coevolution (Dieckmann 1994).

This leads us to ask what, if any, geometric metaphor would be appropriate to

describe a process of coevolution, and under what circumstances there exists

a function that is maximized during the course of evolution.

Acknowledgements. We are grateful to the European Science Foundation (R. L.) and the
Royal Society (P. M.) for providing funds to attend a workshop on Evolutionary Dynamics.
The preparation of the manuscript was supported by the Forschungszentrum Jülich GmbH
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