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1
Introduction

Richard Law, Ulf Dieckmann, and Johan A.J. Metz

Species form different kinds of patches; these patches form a mosaic and together
constitute the community. Recognition of the patch is fundamental to an understand-
ing of structure. Patches are dynamically related to each other. But there are also
departures from this inherent tendency to orderliness. At any given time, therefore,
structure is the resultant of causes which make for order, and those that tend to upset
it. Both sets of causes must be appreciated.

Abbreviated from Watt (1947, p. 2)
Pattern and process in the plant community

A sea change has come over theoretical ecology in the past 10 years. The
era of the simple general model that tries to capture the elusive essence of
an ecological community is rapidly fading from sight. This is the age of the
individual-based, spatially explicit, computer-based model (Huston et al.
1988; DeAngelis and Gross 1992; Judson 1994).

Why has this transformation taken place? First there is the simple matter
of practicality: desktop computing power has reached a level at which it
is quite feasible to simulate individuals as they move across a landscape,
interact, reproduce, and die. Second is the issue of language: for many
ecologists, rules encoded in computer algorithms are much more accessible
than the formal mathematical language of dynamical systems. Third is the
appreciation that important ecological intricacies, such as the mechanisms
by which organisms interact in communities, often cannot be incorporated
sufficiently faithfully into simple models. Fourth is an awareness that the
simple models traditionally used in ecology have not always proved very
successful in accounting for phenomena observed in natural systems.

Individual-based simulations are most realistic when they encompass the
randomness of individuals in births, deaths, and movements (e.g., Pacala
et al.1996). Our computer screens then give realizations of complex spatio-
temporal stochastic processes. The simulations have their own intrinsic
interest; they can be a valuable aid in defining and characterizing the pro-
cesses involved and can lead to the discovery of new and interesting phe-
nomena. But we should not to infer too much from a few realizations of a

1



2 1 · Introduction

process: it is not the location and behavior of each individual that matters,
since the stochasticity will ensure that every realization is different at least
in detail. It is the gross properties of the stochastic process that are likely
to be of interest in the long run.

Helpful though simulations are, they can be no more than a step toward
understanding properties of the stochastic process. When you next look at
such a realization as it unfolds on the screen, ask yourself the following
questions:

� Can you distinguish between the random variation intrinsic to any
stochastic process and the ecological signal that characterizes the sys-
tem’s representative behavior?

� What spatial and temporal patterns come about in the long run? In other
words, can you characterize the asymptotic states of the system?

� Can you identify different kinds of patterns that develop as the ini-
tial configuration of the community is changed? Are there alternative
metastable states that depend on the starting conditions?

� Can you work out how many different kinds of patterns could develop
from different starting conditions?

� Can you understand what happens when you change the environment in
which the organisms live by altering the parameters of the process?

� How readily can you sample the parameter space and determine the ef-
fects of parameters on the qualitative and quantitative properties of your
system?

These are important questions, but ones that are very difficult to answer
from individual-based simulations. The heterogeneity of natural environ-
ments in time and space provides a strong imperative for such analyses, but
dealing with such heterogeneity, always a major undertaking in ecology, is
especially demanding in the context of a stochastic process.

As a result of developments in theoretical ecology over the past decade,
enormously complex models have replaced simple ones. If you doubt
this, imagine a community being modeled on a spatial lattice of, say, 100
cells. To keep matters simple, suppose population sizes in the cells are
large enough for stochasticity to be ignored. If you have 10 species in
the community, your dynamical system comprises 1000 equations. Can it
really be that community dynamics need a state space of such staggering
dimensionality? We believe that very often the dynamics can be adequately
represented in a more parsimonious set of equations. It should be pos-
sible to project the dynamics into a low-dimensional space which carries
the essential information. This is more than wishful thinking: Rand and



1 · Introduction 3

Part A Perspectives from
field ecology

Part B Novel phenomena in
spatial ecological modeling

Part C Examples of
simplified spatial complexity

Part D Techniques for 
simplifying spatial complexity

Figure 1.1 Structure of the book.

Wilson (1995) found a spatial resource–predator–prey model that has ef-
fective dynamics in a four-dimensional embedding space. The problem is,
what simplified state space would be an appropriate target for projecting the
dynamics? Can projections be found that properly hold in place the main
effects of spatial structure?

Ecology needs new ideas and methods to deal with dynamics of pro-
cesses in a spatial setting (Wiens et al. 1993; Hastings 1994; Levin et al.
1997; Tilman and Karieva 1997). This book points to and explains some
possible ways forward (Figure 1.1). In the first place, there is obviously
much to be learned from individual-based modeling of ecological commu-
nities. Such models can be motivated by direct observations of individuals
in the field, and they force precise thinking about the processes involved.
They help in developing intuition about how ecological systems behave.
They show us repeatedly how new, unexpected phenomena emerge when
spatial structure is introduced.

Spatially explicit, individual-based models contrast with models that
lack spatial structure, widely used in theoretical ecology in the past. These
earlier models make an assumption that the effects of neighbors are propor-
tional to their density averaged across a large spatial domain (the so-called
mean-field assumption, see Box 1.1). In communities where individuals
interact with their neighbors, the presence of nonrandom spatial pattern,
for which there is abundant evidence in nature, will most likely lead to
major departures from the mean-field dynamics. The world is full of spa-
tial structure, and this has fundamental consequences for many ecological
processes. Individual-based models are an important step toward seeing
what happens when the mean-field assumption is abandoned, and Part B
gives some striking illustrations of the remarkable behavior that can then
emerge.
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Box 1.1 The mean-field assumption in ecology

At the heart of much ecological theory lies an assumption that individual
organisms encounter one another in proportion to their average abundance
across space. You find this assumption in, for instance, the Lotka–Volterra
equations for two interacting species i and j , expressed as the product of
their mean densities Ni Nj .

Before being applied to ecological problems, assumptions of this type
were used in physics and chemistry (Weiss 1907). Examples are collisions
between molecules in a well-mixed gas, the electrical field experienced by
electrons within an atom, and the magnetic field around elementary mag-
nets of a solid. In the last two cases, all electrons in an atom (all elementary
magnets in a solid) are assumed to be locally surrounded by the same elec-
tric (magnetic) field, called the “mean field.” This is why, even in ecology,
the assumption is widely referred to as the mean-field assumption.

The mean-field assumption is most likely to hold as a good approxima-
tion when the physical environment of organisms is homogeneous and

� physical forces exist that cause strong mixing of organisms,
� organisms themselves are highly mobile, or
� organisms interact with others over long distances.

As conditions depart from those above, the mean-field assumption be-
comes less and less appropriate. A lack of mixing, whether due to the exter-
nal environment or immobility of the organisms, generates neighborhoods
around individuals that deviate from the spatial averages. Differences in
local environmental conditions become especially important if organisms
only interact over short distances (integrating over large neighborhoods can
give spatial averages quite close to the mean field). The local environment
organisms experience can then be quite different from the mean environ-
ment, averaged across the entire ecological habitat (see figure). Such depar-
tures from the mean field can feed through to the vital rates of individuals
and can have fundamental effects on their dynamics.

=
Local environment
of individuals

Mean of local
environments

Constructing the mean field. Spatial variation in environmental conditions (e.g., measuring
a resource’s availability) is shown by gray scales; individuals are depicted as points, and
their local environments, as circles. Constructing the mean field by averaging over local
environments shows why the mean-field assumption may break down: a population’s response
to a spatially heterogeneous environment is often different from its response to the mean field.
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However, theoretical ecology needs to move on from simulations of
individual-based processes to manageable approximations that give a bet-
ter understanding of the generic properties of these processes. This is al-
ready being done with some success, as can be seen from the examples
in Part C and the methodological chapters in Part D. When the patterns
we are interested in have a large spatial extent, the methods include dif-
fusion approximations using partial differential equations. These methods
have been available for many years (Okubo 1980) but still have much to
offer ecologists. In addition, novel methods, such as pair approximations
and correlation dynamics, are being developed that concentrate on dynam-
ics of small-scale spatial structure. Analysis of the resulting deterministic
equations can deal with many of the issues left unresolved by stochastic
simulations, including

� overall qualitative features buried in the processes;
� the attractors that are present and whether they correspond to spatially

homogeneous systems or indicate the presence of spatial structures;
� the effect on eventual states of communities of changes in the environ-

ment and ecological interactions, using bifurcation analysis in moder-
ately large parameter spaces;

� the fate of newly introduced mutants and immigrant species, whether
they will invade or be driven to extinction by the resident system.

There is much for the theorist to do here and a great deal to challenge
the ecologist. But a major factor hindering progress is the difficulty ecolo-
gists and theorists have had in developing an effective dialogue. We think
it is essential to develop theory that is demonstrably relevant to real ecolog-
ical systems and to show how it illuminates our understanding of ecology.
We begin with several chapters in Part A that explain what ecologists have
learned about spatio-temporal processes in ecological communities to pro-
vide some guidelines for developing theory.

The book covers a much wider span of knowledge from ecology to math-
ematics than is usual in a single textbook, and we recognize that you may
not want to read it from cover to cover (although of course we hope you
will!). But we hope that you will be encouraged to build bridges from the
parts of the book that lie in your own area of expertise – whether ecology,
computation, or mathematics – to other, less familiar parts and that the book
will aid your understanding of these different areas.

In a sense, the path mapped out in this book – from field observations, to
individual-based simulations, to deterministic approximations of stochastic
processes, and back again – is how ecological theory might have developed
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in an ideal world. But progress in research has its own imperative, and sci-
entists work on the problems that appear promising at the time. Although
the simple models from an earlier age of theoretical ecology may now look
somewhat ad hoc, their importance should not be underestimated: there
certainly are circumstances where spatial structure is less important, and
in these circumstances the earlier theoretical framework will prove helpful.
Our focus on spatio-temporal processes tries to extend the formal frame-
work of ecology, not to replace one paradigm with another. As theoret-
ical ecology develops, the broader framework that emerges should place
earlier theory in its proper context within the structure of our expanding
understanding.
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What have ecologists learned about spatio-temporal processes in natural
communities? The first part of the book gives some answers to this question
and is intended to provide ecological background to which theorists can
turn. We believe such a basis is necessary if we are to achieve a constructive
and enlightening dialogue between ecologists and mathematicians. The
information in Part A indicates how ecologists think about spatio-temporal
processes and sets boundaries on the kinds of spatio-temporal models likely
to be of lasting interest in ecology. This part of the book is a small step in
an iterative process of mutual education of theorists and ecologists.

Ecologists study many kinds of communities, and from this large set
we have chosen to focus on plant communities living on land. The link
between spatial structure and dynamics is particularly strong in these com-
munities for two main reasons. First, plants in terrestrial communities are
relatively immobile in space. Dispersal of propagules does less than one
might expect to compensate for such immobility because most seeds do not
travel far, even if they have structures that aid dispersal. Second, interac-
tions occur primarily between immediate neighbors. Plants respond to the
state of a small spatial neighborhood in their immediate vicinity, not some
large-scale spatial average of the whole community (the so-called mean
field). If there are circumstances in natural communities under which local
spatial pattern should be important, they are in these terrestrial plant com-
munities. The variation in spatial pattern from one location to another is
both sensed and partially generated by the plants; such plant communities
are therefore an obvious place to start looking for dynamics in which space
plays an important part. This is not to suggest that it is only in plant com-
munities that spatial structure can play a major role – several chapters later
in the book point to the importance of spatial structure in other ecological
and evolutionary processes.

Part A concentrates on temperate grasslands. Here, nonrandom spatial
pattern is particularly evident. One reason for this pattern is that many plant
species in such communities reproduce by clonal growth, which greatly
restricts dispersal of propagules and gives rise to clumps of conspecifics.
What is less obvious, but equally important, is that these spatial structures
are in a continual state of flux, and the time scale on which this flux occurs
is short enough for changes in spatial pattern to be observed over a few
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years. Grassland communities are about as close as ecologists can get to
systems in the field in which (1) spatial structure should play a major role
and (2) turnover rates are great enough to make it feasible to study the
dynamics.

The first three chapters follow a sequence from small to large spatial
and temporal scales. The sequence starts in Chapter 2 at the microscopic
scale, with the concept of a neighborhood around an individual plant within
which local interactions take place, resulting in overlapping zones of influ-
ence. Stoll and Weiner consider the mechanisms of competition within this
neighborhood through limited resources such as light and mineral nutrients.
They discuss how ecologists have tried to characterize the neighborhood
as an area around an individual plant and the assumptions implicit in this
work. They also point out some of the main issues that remain open, such
as how to deal with the modular structure that many plants have, and how
to allow the neighborhood to expand as plants grow. Last but not least, they
express a viewpoint about the role of theory in ecology, quite widely shared
by ecologists.

Chapter 3 moves up a step in the scale of time to tackle the turnover of
individuals as they interact in small neighborhoods. A detailed mechanistic
view of neighborhoods of the kind described in Chapter 2 is difficult to dis-
till from ecological data. Silvertown and Wilson take a more phenomeno-
logical approach, integrating over the known (and unknown) mechanisms
of interaction by means of a single measure of neighborhood dependence,
often given as a competition coefficient for a pair of species. They describe
how such coefficients are estimated in the field and the information that
can be gleaned from matrices of these coefficients for several coexisting
species. Rather little has been done to develop these ideas explicitly in a
spatial framework. The authors discuss the state of this art, together with
the work that they and their colleagues have done in estimating parameters
for spatial invasion of grasses in the field. Their work leads to a cellular
automaton model of the spatial dynamics.

Chapter 4 moves up a step further in the scale of both time and space
to the spatio-temporal patterns observed in grassland communities. In the
long run, the success of spatio-temporal models of plant communities will
be judged by their capacity to capture these macroscopic features from
the underlying microscopic (neighborhood-dependent) processes of birth,
death, and movement. Nonrandom spatial patterns are certainly typical
of grassland communities. In Chapter 4, Herben, During, and Law dis-
cuss the extent to which these patterns can be said to be self-generating
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or imposed from outside by heterogeneities in the external environment.
Several informal theories can be found in the ecological literature that fos-
ter an understanding of how spatial structure of plant communities de-
velops through time. The models include cyclic sequences of commu-
nity states (mosaic cycles), random sequences of states (carousel model),
non-allowable states (guild proportionality), and community states that are
“frozen” through time by space preemption.

The last chapter in Part A provides a link between what ecologists can
do in the field and what theorists can do at their desks. It is essential to have
in place a formal statistical framework for analysis of the spatio-temporal
processes taking place in nature. Chapter 5, by Cox, Isham, and Northrop,
gives an introduction to the armory of methods that statisticians have avail-
able for treating empirical data associated with spatio-temporal processes.
First, the chapter covers descriptive methods for preliminary inspection of
data collected over time, space, or both time and space together. Second,
it deals with stochastic models for describing spatial data, in particular,
Poisson-based models and Markov random fields. Third, it considers meth-
ods by which the parameters of such models can be estimated, notwith-
standing the complex interdependencies that spatio-temporal data typically
exhibit.
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Part B of the book turns from the field to models of ecological processes in
spatially structured environments. We hope eventually for a seamless tran-
sition from field-based rules of interaction among neighboring plants and
animals to computer simulations. The results given in Chapter 3 illustrate
how far plant ecologists have gotten in the field, and Chapter 6 shows what
theorists can do by listening carefully to ecologists. But at the present state
of the art, most models, while motivated by ecological and evolutionary
phenomena, are based on assumptions about spatial processes in nature.
From study of these models, there is a clear and exciting message: new
phenomena, unexpected from mean-field models, are very often evident.

Why should spatially extended models of population and community
dynamics differ so much from their mean-field counterparts? A major rea-
son is the existence of spatial variation in local environments. As Part A
emphasizes, organisms very often interact with their neighbors, and it is the
density of these neighbors that matters, not the density averaged over some
large spatial region. Deviations of local neighborhoods from the global
average are of two kinds: systematic and random.

� Systematic deviations often arise from previous interactions between
neighbors. For example, if individuals of species A and B interact antag-
onistically and reproduce locally, fewer individuals of A will be found
around those of B than expected from their global densities (and vice
versa). Such deviations are described by local correlations, and dealing
with them becomes a major theme later in the book (Chapters 13, 14,
and 18 to 21).

� Random deviations are due to the finite number of neighbors. These
local fluctuations play an important role when organisms respond non-
linearly to different local environments because the individuals’ re-
sponse, averaged across environments, is not equivalent to their response
to the average environment. In such cases, chance fluctuations do not
cancel out, and they may have macroscopic consequences (Chapters 7,
19, and 21).

The separation of systematic and random deviations does depend to some
extent on the approach used; yet both types of deviation are often present,
and the distinction is a useful aid to understanding the dynamics. The aim
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of Part B is to illustrate and emphasize the phenomena that can result from
these local correlations and fluctuations.

To construct models of spatio-temporal processes, researchers have to
make some basic choices about space, time, and state variables. Each of
these quantities may be continuous or discrete, giving eight combinations,
underpinned by different kinds of mathematics. Some approaches are more
commonly used than others, and the chapters in Part B illustrate two of
the more widely adopted approaches. Most popular among biologists are
cellular automaton (CA) models. These are usually stochastic and update
discrete states of cells (typically representing individuals) on a discrete spa-
tial lattice according to the state of cells in some neighborhood in discrete
time (Chapters 6 to 8). The popularity of CA models is well deserved:
as they are rule based, biologists can readily turn them into algorithms for
numerical simulation of individuals interacting in some spatial region, as
discussed in Chapter 6.

In another widely used approach, models take state to be a continu-
ous variable, envisaged as a locally well-mixed density or concentration,
with dynamics that are continuous in space and time. These models are
written as partial differential equations (PDEs), most commonly reaction–
diffusion equations, with terms describing (1) interactions (“reactions”)
that depend on locally well-mixed densities of individuals and (2) diffu-
sion across space by random movements of individuals. Biologists often
find reaction–diffusion equations more difficult than CA models to under-
stand and turn into computer algorithms, but reaction–diffusion equations
do have the potential to give important insights into the development of
large-scale spatial structure, as Chapters 9 and 10 illustrate. How these two
modeling paradigms are related is discussed in detail in Chapter 9.

CA and PDE models are two points in a broader spectrum of alternative
approaches to spatial modeling. The relative merits of different approaches
depend on the biological problem posed, and Chapter 11 illustrates how
the modeling framework needs to be changed as the scale moves from the
individual to the local population to the global population.

In their study of spatially extended models, theorists are motivated by
a wide variety of biological phenomena, as is evident from the chapters in
Part B. In Chapter 6, Wissel illustrates the insights that CA models can give
into effects of space on dynamics of three ecological communities. The first
deals with rabies in populations of foxes; using the CA model and given
some simple rules for infection, a wavelike pattern of spread develops over
space with a good match to field data. The second is a shrub community in
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an arid environment; a CA model shows the importance of rainfall events,
external to the community, in driving the long-term community dynamics.
The third community is a boreal forest; the CA model describes the spread
of fires through the forest and gives a close resemblance to the size and
shape of fires observed in the field.

Chapter 7 introduces a framework for analysis of prebiotic evolution
based on a set of replicators that share a common metabolism. The repli-
cators are bound to a surface and depend on local diffusion of metabo-
lites from other replicators within a small neighborhood to synthesize the
monomers they need to replicate themselves. Comparing results of a CA
model for this system with those of its mean-field counterpart, Czárán and
Szathmáry show that the community of replicators depends on the absence
of local correlations for survival. All replicators must be present in the
same locality for successful metabolism, and a replicator that becomes rare
has an advantage over those that are common. Such a system illustrates the
importance of local fluctuations and has the potential to produce a stable
community of replicators, notwithstanding their inherent tendency toward
competition.

In Chapter 8, Nowak and Sigmund describe evolutionary games that are
played with neighbors on a spatial grid. They show that interactions be-
tween neighbors have major effects on the relative success of individuals
exhibiting cooperative and selfish behavior. In particular, clusters of coop-
erative individuals can develop and persist, even without repeated interac-
tions between pairs of individuals. This is not possible in the absence of
spatial structure, and the introduction of space thus increases the range of
conditions under which cooperation is to be expected.

Chapter 9 explores discrepancies between CA and PDE models that are
intended to describe the same reaction–diffusion system. Drawing exam-
ples from the interaction of polymers in early evolution, Cronhjort demon-
strates the various pitfalls awaiting the unattentive modeler. He explains
how different assumptions that are deeply ingrained in the two types of
spatial models sometimes can result in incompatible predictions of spatio-
temporal dynamics. Processes used for illustration are interesting in their
own right: rotating spirals, their resistance to parasites (chemical species
that accept catalysis from a member of the cycle but do not catalyze the self-
replication of any other member), and self-generating clusters that can split,
chase, and collapse are fascinating instances of non-mean-field behavior.

Chapter 10 elaborates on one of the biological themes broached in
Chapter 9, spatial self-structuring in hypercycle models. Hypercycles are
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small cyclic reaction networks where each chemical species catalyzes the
self-replication of the next species in the cycle. Boerlijst uses PDE mod-
els of hypercyclic reaction–diffusion systems while accounting for the dis-
creteness of individuals by using a cut-off at low densities. He discusses
how spatio-temporal patterns generated in these systems can greatly change
the course of evolution. Specifically, the formation of spirals and spots can
make hypercycles resistant to parasites. Such dynamics are best explained
by analyses of selective pressures arising at the level of emergent spatial
patterns.

Chapter 11 discusses how diffusive coupling between patches can stabi-
lize small predator–prey cycles at the cost of large ones. Jansen and de Roos
also consider the effective decoupling of fluctuations in different patches;
this decoupling comes about due to demographic stochasticity as well as to
the existence of a deterministic but chaotic spatial attractor. The resulting
spatio-temporal processes lead to effective stabilization of overall popu-
lation densities, and the message is that spatially extended predator–prey
cycles are damped down relative to their mean-field counterparts.

It is evident from the examples given in Part B and elsewhere in the book
that the dynamics of systems that incorporate space can be much richer
than those based on mean-field approximations. Biologists and mathemati-
cians are only just starting to chart this territory and to consider what the
implications are for dynamics of living systems.
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Because individuals react only to their local environment, ecological in-
teractions are intrinsically spatial. It is the local environment that affects
light absorption, nutrient or food intake, and predation risk, thereby indi-
rectly impinging on growth, births, deaths, and movements. Part A showed
how, in real life, the local environment is influenced more by near neigh-
bors than by neighbors at greater distances. Various examples presented in
Part B showed that these local ecological interactions can have a dramatic
influence on population dynamics. Clearly, mean-field approximations can
tell only a small part of the ecological story.

Each example discussed in Part B represents an ecological or evolution-
ary problem worth studying in its own right. Yet it is natural to want to
go further and ask to what extent the relationships that emerge apply to
more general classes of ecological processes. The resulting research pro-
gram aims at determining which features in the interplay of mechanisms
are essential for the occurrence of particular phenomena and which are co-
incidental.

This agenda can be approached from two perspectives, an intuitive and
a formal one. (Actually these are just extremes of a continuum of research
strategies in which both components figure in different proportions.) In-
tuitive approaches seek appropriate metaphors drawn from our physical or
geometrical imagination. If used unaided by more formal tools, these ap-
proaches have two drawbacks: their unsystematic character severely limits
their scope in complicated settings, and the resulting insights are not always
trustworthy. Yet, results based on intuitive reasoning are easy to commu-
nicate and have considerable immediate appeal because they engender a
feeling of “real understanding.”

Currently available formal approaches cover only a rather small subset
of the ecological mechanisms and phenomena of interest. In our opinion,
this should not be so much a reason for experimentalists or theorists to seek
other pastures as a reason to try to extend the reach of formal methods. In
ecology we are unavoidably confronted with complicated patterns of inter-
action, and formal tools are all we have for tackling such problems in a
systematic way. Part C links the surprising range of phenomena originat-
ing from the spatially localized nature of ecological interactions exempli-
fied in Part B to the formal approaches for analysis of spatial interactions
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explained in Part D. This is done by means of concrete examples show-
ing how the tools can be brought to bear on ecological questions. Part C
also illustrates additional relevant tools that are not yet well embedded in a
systematic framework.

Chapter 12 shows that, from an appropriate perspective, ecological spa-
tial complexity can be less than it appears at first sight. The chapter starts
with the question of how one recognizes natural spatial scales generated
by ecological interactions against the backdrop of a homogeneous physical
environment. Wilson and Keeling answer this question using as examples
both a static pattern generated by a genetic competition mechanism and
a dynamic one generated by a predator–prey interaction, obtained by run-
ning a grid-based artificial ecology. After identifying the appropriate spa-
tial scales, the authors show how a substantial degree of low-dimensional
determinism can be found by considering spatial averages at an intermedi-
ate scale, above the scale at which the inherent demographic fluctuations
dominate and below the scale at which spatial averaging reduces all spatio-
temporal patterns to a homogeneous blur. The chapter’s overall message
is that a fair amount of formalism may be needed to extract clear signals
from a spatially explicit ecological model, but that the quest for reduced
descriptions of heterogeneous systems is far from hopeless.

The remaining chapters in Part C fall into one of three categories.
Chapters 13 and 14 deal with small-scale patterns; Chapter 15, with
intermediate-scale patterns; and Chapters 16 and 17, with large-scale pat-
terns. Small-scale patterns are necessarily stochastic, since they involve
small numbers of individuals, whereas large-scale patterns tend to be more
deterministic.

Part C provides a first glance at so-called pair approximations and mo-
ment closures, recently developed formal tools for dealing with small-scale
spatial heterogeneity. In grid-based models, the behavior of each individ-
ual is influenced only by a few neighboring individuals. If those neighbors
are equivalent and act additively on births, deaths, and movements, mean
rates for these three types of events depend only on the average number of
neighbors. If we refer to individuals as singlets and to pairs of adjacent in-
dividuals as doublets, the change in the average density of singlets depends
only on the average density of doublets. Unfortunately, the rate of change
of the latter depends on the average density of triplets. Pair approxima-
tions and moment closures try to capture triplet densities as functions of
doublet and singlet densities, for example, by assuming conditional inde-
pendence: triplets behave as if they were formed from doublets by random
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assemblage. Equations describing the change in singlet and doublet den-
sities are also called moment equations. In the general case, doublet den-
sities, or second moments, depend on the distance between paired individ-
uals. The resulting functions are also called correlation densities, and the
notion of moment dynamics is used interchangeably with that of correla-
tion dynamics. In current practice, the term pair approximation is reserved
for modeling in discrete space. In principle, however, pair approximations
are just special types of moment closures that derive their simplicity from
restricting attention to pair correlations at nearest-neighbor distances (a re-
striction that is only meaningful in discrete space). Examples in Chapters
13 and 14 show how pair approximations and moment equations can suc-
cessfully describe ecological change under small-scale spatial heterogene-
ity. A systematic treatment of pair-approximation techniques and moment
closure methods can be found in the first four chapters of Part D.

Chapter 13 demonstrates the utility of pair approximations for under-
standing grid-based models. Iwasa presents three successful applications,
ranging from forest dynamics to bacterial competition. The first example
studies plants that can reproduce both vegetatively and by seed, with a lin-
ear trade-off between the two modes. Mean-field results predict that equi-
librium plant density is independent of relative investment in either mode,
whereas spatially explicit simulations and pair-approximation results both
predict a single maximum at intermediate levels of relative investment. The
second example illustrates bistability in the spatially explicit dynamics of
forest gaps; the bistability is predicted by pair approximation but is ab-
sent from mean-field equations. The model was fitted quantitatively to field
data from Barro Colorado Island, Panama, using pair approximation. A
third example studies competition between colicin-producing and colicin-
sensitive strains of Escherichia coli. Whereas mean-field equations predict
either bistability or success of the sensitive strain, pair-approximation re-
sults largely replace bistability with success of the colicin-producing strain,
in accordance with laboratory experiments.

Chapter 14 introduces moment equations for continuous space and
presents applications to two spatial Lotka–Volterra models as examples. As
in Chapter 13, the quantitative match between results obtained from spatial
simulations and those from a moment closure based on a conditional inde-
pendence hypothesis turns out to be surprisingly good. In the first model,
Law and Dieckmann pit two species against each other, one being the better
competitor and the other the better disperser. Mean-field results predict sur-
vival of the better competitor, whereas moment equations correctly forecast
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development of a spatial structure that causes the poorer disperser to suffer
more from intraspecific competition, resulting in a reversal of the compet-
itive outcome. The second example investigates how spatial scales of dis-
persal and competition affect equilibrium mean densities in a single species
with local logistic density regulation. Mean-field results can only be trusted
when both scales are large. For smaller, yet similar, scales, clumping causes
reduced equilibrium densities. When competition neighborhoods are small
relative to the scale of dispersal, more regular distributions of individuals
result, allowing for increased equilibrium densities.

Chapter 15 investigates the evolution of transmission rates in a grid-
based host–parasite system. In the mean-field approximation, evolution
maximizes the basic reproduction ratio of parasites, which is proportional
to the transmissibility and lifetime of the parasites. The fact that the ba-
sic reproduction ratio should be larger than 1 sets a lower bound to viable
transmissibilities. In spatial systems accounting for the discreteness of in-
dividuals, an upper bound also exists: parasites that are too virulent quickly
kill all locally reachable hosts and therefore die out. In addition to these
ecological considerations, Keeling discusses evolutionary implications. In
a system with spatial structure, adaptation of transmission rates stops near
the upper critical value, whereas in mean-field models rates continue to in-
crease (unless a trade-off between transmission and survival is imposed).
This chapter is featured in Part C because it illustrates how to simplify
complexity at intermediate spatial scales: based on a deterministic carica-
ture that describes the frequency dynamics of spatial aggregates that differ
in their numbers of hosts and parasites, the essential behavior of the full
spatial model is well recovered. Although, at present, the reduction tech-
nique employed is specific to the host–parasite model investigated here, it
appears to hold wider promise. One additional message of this chapter is
that evolution may proceed considerably slower in a spatial setting than
under mean-field conditions.

Chapters 16 and 17 analyze the dynamics of invasion waves, a class of
large-scale spatial phenomena that are particularly well understood. In-
vasion waves are especially relevant for evolutionary considerations, as
adaptive innovations often sweep through spatial populations in a wavelike
fashion.

Chapter 16 investigates the expansion of epidemics in agricultural crops,
ranging from the microscale, where foci with diameters of a few meters de-
velop from single infections, to the continental scale, where an epidemic
rages over a continent in one or a few growing seasons. The economic
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importance of epidemics has resulted in detailed quantitative experimen-
tation and modeling. Zadoks has participated in this research from its
early stages and from this perspective describes its history and results. Ini-
tial approaches used deterministic numerical simulations. Because basic
reproduction ratios of fungal pathogens are very high in agricultural epi-
demics, their life-history characteristics cannot be neglected; consequently,
reaction–diffusion models are inadequate. Early simulation models were
based on delay-differential equations for pathogen density coupled with in-
tegral equations for the spatial redistribution of spores. A second generation
of models taking an analytical approach were phrased in terms of integral
equations in space and time; the corresponding mathematical framework is
summarized in Chapter 23, including simple recipes for extracting spatial
expansion rates. When supplied with real life-history data, these integral-
equation models provide surprisingly accurate predictions of the speed of
focus expansion. Third-generation models take better account of spatial in-
homogeneities and the stochasticity inherent in long-range spore dispersal;
they again rely mainly on numerical simulations.

Chapter 17 provides a link between spatial game theory, described in
Chapter 8, and reaction–diffusion models, treated in Chapter 22. Ferrière
and Michod show how reaction–diffusion equations can be constructed for
evolutionary games and review the mathematics available for predicting
outcomes of competitive spatial processes. In such settings, strategies can
overcome disadvantages of rarity by forming clumps. Supported by such
“base camps,” rare strategists can start to conquer space in a wavelike fash-
ion. The chapter investigates invasion waves for the competition between
Tit For Tat (TFT) and Always Defect(AD), two strategies in the iterated
Prisoner’s Dilemma. In particular, the effects of mobility rates and types of
memory (determining how past actions of other players are remembered)
on competitive outcomes are discussed. In a spatially inhomogeneous set-
ting, the mobility rates strongly influence the rate at which fresh meetings
occur. For the TFT strategy to spread, TFT players need to encounter a suf-
ficient number of their own kind in the front of an invasion wave and should
not be suckered too often by AD players newly moving into TFT clumps.

By showcasing “methods at work” to simplify spatial complexity, Part C
should provide a gentle transition to the systematic treatments of techniques
offered in Part D.
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Introduction to Part D

Which systematic techniques can we apply for simplifying spatially explicit
models in ecology? In the following chapters, we have assembled a menu of
tools tailored to capturing and reducing spatial complexity. Chapters in this
part are tutorials, each introducing or extending one method. They should
help you to acquire the necessary skills for applying these techniques to
ecological problems of your own choice.

The tools described in this part cover three complementary types of
models in spatial ecology:

� Probabilistic cellular automata and pair approximations (Chapters 18
and 19)

� Dynamical point processes and moment methods (Chapters 20 and 21)
� Deterministic continuum models and analyses of traveling waves (Chap-

ters 22 and 23)

As we have seen in previous chapters, probabilistic cellular automata dis-
cretize ecological space into sites on a regular grid or on a more general
contact network. On such a geometry, ecological dynamics unfold as sites
change their states depending on states of adjacent sites. In contrast, indi-
viduals in dynamical point processes occupy locations in continuous space
and thus are not restricted to any given set of sites; individuals may mul-
tiply, move, or disappear in response to other individuals present in their
neighborhood. Ecological models of cellular automata and point processes
are typically stochastic: two realizations of the same ecological process are
unlikely to be identical. Continuum models are different: while individuals
here are situated in continuous space, they are assumed to be so abundant
that their spatial density distributions can be regarded as continuous and
their dynamics as deterministic.

For each such modeling framework, techniques have been developed to
reduce its spatial complexity. Methods of choice for cellular automata are
pair approximations and their refinements; point processes can be simpli-
fied by way of moment methods; and the dynamics of continuum models
are often best understood by investigating the existence and propagation of
traveling density waves. The various examples presented in Part C have
introduced these different tools: each has its domain of utility and thus
ought to be chosen according to the ecological question at stake. We believe
that you will find it worthwhile to learn about these alternatives: such an
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overview allows you to decide which tools are best suited to the specific
ecological scenario you wish to investigate.

The first two chapters in this part introduce pair approximations.
Chapter 18 reviews the fundamental concepts of this technique for grid-
based models. While mean-field approaches keep track only of global
spatial densities (and therefore are restricted to spatially uniform systems),
pair approximations step beyond this simplified view by tracking through
time probabilities of states of pairs of adjacent sites. Satō and Iwasa also
present so-called improved pair approximations that allow specific a priori
assumptions about the density of triplet configurations to be incorporated
into analyses. This can be done either in a static way (constant discount-
ing) or dynamically (variable discounting). Both refinements are designed
to enhance the accuracy of pair approximations.

Chapter 19 shows how pair approximations can exploit knowledge about
underlying contact structures. Triangular and square lattices are studied in
detail, and other two-dimensional contact networks, resulting from local
randomization of lattice links, are investigated as well. To represent ecolog-
ical processes on grids, it is often helpful to consider simultaneous changes
in the states of two adjacent sites (think, for example, of the consumption
of a prey individual and the resulting satiation of a predator); van Baalen
allows for this generalization. The chapter also emphasizes the importance
of local fluctuations for refining predictions of pair approximations.

In Chapter 20, the pair-approximation method is extended to continu-
ous space. Individuals are represented by their actual location, avoiding an
artificial discretization of the habitat. With each point in a pattern corre-
sponding to a single individual, ecological change can then be envisaged
as the stochastic dynamics of point processes. Bolker, Pacala, and Levin
analyze how spatial densities of pairs of individuals depend on the distance
between the individuals and how these pair densities are expected to change
over time. The resulting moment methods for simplifying spatial complex-
ity successfully predict outcomes of intra- and interspecific competition,
and provide analytical insight into intricacies of spatial interactions.

Chapter 21 elaborates on the method of moments in continuous space
and presents a three-tiered procedure for its derivation. Ecological pro-
cesses at the level of individuals are described by a spatially explicit,
stochastic process. Expected dynamics of this process are then expressed
in terms of correlation densities, with global densities and pair densities as
special cases. A closure assumption finally yields self-contained dynam-
ics. Dieckmann and Law discuss their method within the broader context
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of relaxation projections, evaluate the relative performance of different
closure assumptions, and stress the importance of fluctuation corrections
complementing the correlation corrections derived from pair dynamics.

Chapter 22 gives an introduction to reaction–diffusion models – the
most popular type of deterministic models in spatial ecology to date. As-
suming continuous spatial density distributions, ecological interactions at
each location of a habitat are described by deterministic population dynam-
ics, defining the reaction part of the model. The model’s diffusion part
allows for the coupling of different locations that results from movement
processes. Hutson and Vickers explain the use of comparison methods and
review analytical techniques for understanding the formation of Turing pat-
terns and the dynamics of traveling waves. They underline the flexibil-
ity of reaction–diffusion modeling by presenting applications to mutation–
selection processes and to systems with memory.

Invasion waves are empirically important and are investigated in
Chapter 23. Concentrating on this specific class of spatio-temporal pat-
terns, Metz, Mollison, and van den Bosch can incorporate more realistic
movement processes and life-history details than is possible for reaction–
diffusion models. While invasion waves and foci expansions occur in
many different settings – ranging from epidemiological to evolutionary –
their main characteristics are often determined solely by the speed of the re-
sulting wave front. The chapter explains ways to predict this speed and dis-
cusses complications that arise when space is inhomogeneous, individuals
interact (directly or indirectly), or movement of individuals occurs across
different spatial scales.

Part D thus provides introductions to three major techniques for simpli-
fying spatial complexity. The utility of these tools has been demonstrated
in Part C; here, systematic treatments are given.
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We would like to close this volume with a look at the future of mechanistic
modeling in spatial ecology. We hope that at least some of the optimistic
views sketched below come true. No doubt others, hopefully fewer, will
turn out to be mirages.

Just as theory is at its best when it is demonstrably applicable to real
ecological systems, field research is most important when it addresses ques-
tions that clearly transcend a particular study system. Few researchers,
however, have sufficient command of both theory and experiment to ac-
tively participate at the two research fronts. It is therefore essential to
extend chains of collaboration between empiricists and theorists. These
chains should not become too long lest they break or the message passed
along becomes too garbled. If such collaborative chains are to work effec-
tively, each partner must have a good understanding of the others’ vocabu-
lary, basic concepts, and techniques.

One of this book’s objectives is to foster dialogue between those re-
searchers with empirical competence and those with theoretical skills in
the field of spatial ecology. In practice, there is still an appreciable dis-
tance between the detailed investigations of plant interactions reported in
Part A of this volume and the mathematical methods advanced in Part D.
However, ecological theory is making great strides toward integrating more
ecological realism into manageable models. Theorists and empiricists alike
are searching for new kinds of models that are better able to account for the
complex implications of spatial heterogeneity. In this context, we clearly
discern an increasing appreciation for the importance of constructing eco-
logical theory from the bottom up, starting from the level of the individual
and working up to the dynamics of populations and communities. We be-
lieve that this is why there already is a close conceptual correspondence
between the interaction neighborhoods considered by the plant ecologists
in Part A and those used by the mathematicians in Part D (notwithstanding
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the distance between the two research fields as practiced today). At a larger
spatial scale, the good match between observed epidemiological foci and
the theory of invasion waves is also encouraging. We may not yet have all
the connections in place, but contacts are being made.

Whereas Parts A and D show some correspondence in their concepts and
methods, there is substantial diversity in the intermediate realm, covered in
Parts B and C of this book. Here, scientific imagination is roaming more
freely, spurred by the availability of powerful computers and the multitude
of novel phenomena to be discovered. Humans are visual creatures, with a
fascination for spatial pattern. It is becoming increasingly clear that many
important ecological phenomena can only be understood in terms of the
self-generated spatial patterns found in ecosystems.

Computer simulations and resulting spatial patterns have considerable,
and rightful, appeal. In the process of covering new ground in ecological
understanding, simulation studies often take on the role of pioneers. In the
long run, however, we hope to see the former shoals transformed into safe,
fertile ground through systematic consolidation during later successional
stages. Here, mathematics can provide the necessary infrastructure. Such
consolidation is currently under way in spatial ecology and may eventually
help us to see the pattern in the patterns.

At the moment, the pattern is clearest at the extremes of spatial scale.
Current mathematical techniques are most successful at the relatively large
and the relatively small scales. Moment methods and pair-approximation
techniques help us to unravel some of the intricate consequences of small-
scale spatial structure. Yet, these methods fail, or need to be extended, in the
presence of long-range heterogeneities. On the conceptual side, moment
methods alert us to the critical importance of adopting an “individual’s-eye
view”: it is the (necessarily local) environments experienced by individu-
als that shape a population’s response. And in these local environments,
neighbors are not always abundant enough to permit us to neglect sam-
pling variance; fluctuation corrections are thus important complements of
the correlation corrections that take care of small-scale structure. Reaction–
diffusion and integral-equation methods, on the other hand, are tailored to
describe large-scale heterogeneities. Models of these types are typically
derived from so-called rapid-stirring limits, ensuring the local equivalent of
mean-field conditions; for this reason, correlation and fluctuation correc-
tions are rarely considered in such models.
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Models in which space and populations are discrete (as in cellular au-
tomata) and those where they are continuous (as in partial differential equa-
tions) are often viewed as interchangeable descriptions that can be appro-
priately applied to the same kinds of systems. This view obscures the fact
that matches between real systems and their simplified mathematical de-
scriptions are only as good as the assumptions under which those simpli-
fications have been derived from individual-based considerations. Putting
more emphasis on formal derivations therefore is not just pedantry. The
derivations unveil assumptions and help eliminate misunderstandings that
otherwise would soon permeate spatial ecology.

Recent studies underline that it is the discreteness of individuals in par-
ticular that has unexpected consequences. In continuum-based descrip-
tions, this discreteness can to some extent be fudged by applying ad hoc
threshold rules, but more rigorous ways of handling are needed.

For intermediate-scale patterns, no obvious solution is on the horizon.
This is mainly because, for such patterns, clear mathematical limits from
which to derive suitably simplified descriptions do not seem to be avail-
able. We are more hopeful about the problem of coping with the simulta-
neous presence of small- and large-scale spatial structure. Here, it seems
worth aiming at a merger of moment methods and reaction–diffusion tech-
niques. One step in this direction has already been taken by incorporating
fluctuation corrections into reaction–diffusion models (based on so-called
hydrodynamic limits of interacting particle systems). Yet, the real challenge
remains: to systematically incorporate correlation corrections into reaction
terms. We expect some rapid progress on this problem will be possible in
the near future.

We believe that all of these developments together will lead to a third
generation of models in spatial ecology. After the drastic oversimplification
that has compromised mean-field models and, to a lesser extent, reaction–
diffusion models, and following the bewildering intractability of many of
the contemporary individual-based simulation models, a bridge will be es-
tablished, constructed from elaborate but manageable models of intermedi-
ate complexity.

We expect that this third generation of models will have the following
features:

� They will be intimately linked to individual-based models by sound ap-
proximation schemes that make explicit the underlying assumptions.
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� In particular, new approaches will respect the discreteness of individu-
als by putting into place fluctuation corrections that go beyond current
threshold heuristics.

� They will entail the merging of the insights and techniques already avail-
able for small- and large-scale patterns.

� Some will address spatial heterogeneity at intermediate scales. De-
velopment of a suite of spatial statistics, geared to particular types of
intermediate-scale structure, will allow more systems to be approxi-
mated by relaxation projections.

� Based on such advances, evolutionary implications of spatial structure
will receive more attention. A theory of spatial adaptive dynamics, in
which descriptions of local mutant growth are translated into predictions
of phenotypic change, is in the making.

Yet there are many reasons for modesty. More powerful methods gener-
ally impose steeper learning curves on their practitioners. Unfortunately, no
amount of effort will ever result in models of spatial complexity possessing
the simplicity that mean-field approximations once offered. Nonetheless,
we believe that the new methods presented in Parts C and D of this book
have enticing cost-to-benefit ratios, and we hope that this volume makes
those benefits accessible. If the new methods can successfully be applied to
an increasing number of relevant ecological questions, then some of them,
stripped down to their essentials, may eventually become part of the stan-
dard ecological repertoire.

One should be aware, though, that spatial processes have an inex-
haustible potential for dynamical complications, and that it will never be
possible to deal with this complexity through just one method. Instead,
we need inspired combinations of a range of techniques for constructing
helpful simplifications. Spatial systems of realistic complexity need to be
approached from many angles to achieve the greatest understanding.




